Skip to Page Content

Tin Coil

High Purity Sn Coil
CAS 7440-31-5


Product Product Code Request Quote
(2N) 99% Tin Coil SN-M-02-CL Request Quote
(3N) 99.9% Tin Coil SN-M-03-CL Request Quote
(4N) 99.99% Tin Coil SN-M-04-CL Request Quote
(5N) 99.999% Tin Coil SN-M-05-CL Request Quote
(6N) 99.9999% Tin Coil SN-M-06-CL Request Quote

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
Sn 7440-31-5 166491 N/A MFCD00133862  231-141-8 N/A [Sn] InChI=1S/Sn ATJFFYVFTNAWJD-UHFFFAOYSA-N

PROPERTIES Mol. Wt. Appearance Density Tensile Strength Melting Point Boiling Point Thermal Conductivity Electrical Resistivity Eletronegativity Specific Heat Heat of Vaporization Heat of Fusion MSDS
118.69 Yellow 7310 kg/m³ N/A 231.93 °C 2602 °C 0.668 W/cm/K @ 298.2 K  11.0 microhm-cm @ °C 1.8 Paulings  0.0510 Cal/g/K @ 25 °C 70 K-Cal/gm atom at 2270 °C 1.72 Cal/gm mole  Safety Data Sheet

 Tin CoilTin coils are formed wires wound around a core to create a wrapped helix pattern. American Elements specializes in producing high purity uniform shaped Tin Coil with the highest possible density for use in semiconductor, Chemical Vapor Deposition (CVD) and Physical Vapor Deposition (PVD) processes including Thermal and Electron Beam (E-Beam) Evaporation, Low Temperature Organic Evaporation, Atomic Layer Deposition (ALD), Metallic-Organic and Chemical Vapor Deposition (MOCVD). Coils are wrapped wire structures of varying thickness and lengths. Metal Coils are available in custom sizes with strict tolerances (See ASTM requirements) and alpha values (conductive resistance) for uses such as gas detection and thermometry tolerances (Also see Nanoparticles) . Please contact us to fabricate custom coil alloys and gauge sizes. Materials are produced using crystallization, solid state and other ultra high purification processes such as sublimation. American Elements specializes in producing custom compositions for commercial and research applications and for new proprietary technologies. American Elements also casts any of the rare earth metals and most other advanced materials into rod, bar, or plate form, as well as other machined shapes and through other processes such as nanoparticles () and in the form of solutions and organometallics. We can also provide Rod outside this range. See research below. We also produce Tin as powder, ingot, pieces, pellets, disc, granules and in compound forms, such as oxide. Other shapes are available by request. Tin coils are used as components in many electrical devices.

Tin Bohr ModelTin (Sn) atomic and molecular weight, atomic number and elemental symbolTin (atomic symbol: Sn, atomic number: 50) is a Block P, Group 14, Period 5 element with an atomic weight of 118.710. The number of electrons in each of tin's shells is 2, 8, 18, 18, 4 and its electron configuration is [Kr] 4d10 5s2 5p2. The tin atom has a radius of 140.5 pm and a Van der Waals radius of 217 pm.In its elemental form, tin has a silvery-gray metallic appearance. It is malleable, ductile and highly crystalline. High Purity (99.9999%) Tin (Sn) MetalTin has nine stable isotopes and 18 unstable isotopes. Under 3.72 degrees Kelvin, Tin becomes a superconductor. Applications for tin include soldering, plating, and such alloys as pewter. The first uses of tin can be dated to the Bronze Age around 3000 BC in which tin and copper were combined to make the alloy bronze. The origin of the word tin comes from the Latin word Stannum which translates to the Anglo-Saxon word tin. For more information on tin, including properties, safety data, research, and American Elements' catalog of tin products, visit the Tin element page.

HEALTH, SAFETY & TRANSPORTATION INFORMATION
Warning
H319-H335 
Xi
36/37
26
XP7320000
N/A
3
Exclamation Mark-Acute Toxicity        

CUSTOMERS FOR TIN COIL HAVE ALSO LOOKED AT
Bismuth Indium Tin Alloy Tin Acetate Tin Metal Tin Oxide Tin Chloride
Tin Pellets Tin Oxide Pellets Gold Tin Alloy Tin Nitrate Tin Acetylacetonate
Tin Foil Tin Rod Tin Nanoparticles Tin Powder Tin Sputtering Target
Show Me MORE Forms of Tin

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums tTypical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Tin

  • Formation of an Imino-Stabilized Cyclic Tin(II) Cation from an Amino(imino)stannylene. Ochiai T, Franz D, Irran E, Inoue S. Chemistry. 2015 Mar 12.
  • Synthesis and thermal behavior of tin-based alloy (Sn-Ag-Cu) nanoparticles. Roshanghias A, Yakymovych A, Bernardi J, Ipser H. Nanoscale. 2015 Mar 11.
  • Efficient Conversion of CO2 to CO Using Tin and other Inexpensive and Easily Prepared Post-Transition Metal Catalysts. Medina-Ramos J, Pupillo RC, Keane TP, DiMeglio JL, Rosenthal J. J Am Chem Soc. 2015 Feb 19.
  • Reductive Electropolymerization of a Vinyl-containing Poly-pyridyl Complex on Glassy Carbon and Fluorine-doped Tin Oxide Electrodes. Harrison DP, Carpenter LS, Hyde JT. J Vis Exp. 2015 Jan 30
  • Tissue distribution of indium after repeated intratracheal instillations of indium-tin oxide into the lungs of hamsters. Tanaka A, Hirata M, Matsumura N, Kiyohara Y. J Occup Health. 2015 Jan 10.
  • A Tin-Free Route to trans-Diels-Alder Motifs by Visible Light Photoredox Catalysis. Lee JH, Mho SI. J Org Chem. 2015 Mar 12.
  • Investigation of Fluoroethylene Carbonate Effects on Tin-based Lithium-Ion Battery Electrodes. Yang Z, Gewirth AA, Trahey L. ACS Appl Mater Interfaces. 2015 Mar 5.
  • Sensing sulfur-containing gases using titanium and tin decorated zigzag graphene nanoribbons from first-principles. Abdulkader Tawfik S, Cui XY, Carter DJ, Ringer SP, Stampfl C. Phys Chem Chem Phys. 2015 Feb 25
  • A rational computational study of surface defect-mediated stabilization of low-dimensional Pt nanostructures on TiN(100). Tak YJ, Jang W, Richter NA, Soon A. Phys Chem Chem Phys. 2015 Feb 23.
  • Transition-Metal-Free Coupling Reaction of Vinylcyclopropanes with Aldehydes Catalyzed by Tin Hydride. Ieki R, Kani Y, Tsunoi S, Shibata I. Chemistry. 2015 Mar 5.
  • Dual-Source Dual-Energy CT Angiography of the Supra-Aortic Arteries with Tin Filter: Impact of Tube Voltage Selection. Korn A, Bender B, Schabel C, Bongers M, Ernemann U, Claussen C, Thomas C. Acad Radiol. 2015 Mar 12.
  • Synthesis of cyclic polyesters: effects of alkoxy side chains in salicylaldiminato tin(ii) complexes. Wongmahasirikun P, Prom-On P, Sangtrirutnugul P, Kongsaeree P, Phomphrai K. Dalton Trans. 2015 Mar 10.
  • A novel and green process for the production of tin oxide quantum dots and its application as a photocatalyst for the degradation of dyes from aqueous phase. Bhattacharjee A, Ahmaruzzaman M. J Colloid Interface Sci. 2015 Feb 8
  • Geochemistry of tin (Sn) in Chinese coals. Qu Q, Liu G, Sun R, Kang Y. Environ Geochem Health. 2015 Feb 17.
  • η3 -Allyl Coordination at Tin(II)-Reactivity towards Alkynes and Benzonitrile. Krebs KM, Wiederkehr J, Schneider J, Schubert H, Eichele K, Wesemann L. Angew Chem Int Ed Engl. 2015 Mar 12.
  • Reply to tin and wiwanitkit. Burkle FM. Disaster Med Public Health Prep. 2015 Feb
  • Chemistry of stannylene-based lewis pairs: dynamic tin coordination switching between donor and acceptor character. Krebs KM, Freitag S, Schubert H, Gerke B, Pöttgen R, Wesemann L. Chemistry. 2015 Mar 16
  • Synthesis of silicon-germanium axial nanowire heterostructures in a solvent vapor growth system using indium and tin catalysts. Mullane E, Geaney H, Ryan KM. Phys Chem Chem Phys. 2015 Feb 25
  • Comparison of the enhanced gas sensing properties of tin dioxide samples doped with different catalytic transition elements. Yang F, Guo Z. J Colloid Interface Sci. 2015 Feb 23
  • Hydrothermal treatment for TiN as abrasion resistant dental implant coating and its fibroblast response. Shi X, Xu L, Munar ML, Ishikawa K. Mater Sci Eng C Mater Biol Appl. 2015 Apr