Skip to Page Content

Yttrium Nanoparticles

High Purity Nano Scale (nm) Y
CAS 7440-65-5

Product Product Code Request Quote
(2N5) 99% Yttrium Nanoparticles Y-M-02-NP Request Quote
(3N) 99.9% Yttrium Nanoparticles Y-M-03-NP Request Quote
(4N) 99.99% Yttrium Nanoparticles Y-M-04-NP Request Quote
(5N) 99.999% Yttrium Nanoparticles Y-M-05-NP Request Quote

Formula CAS No. PubChem SID PubChem CID MDL No. EC No Beilstein
Re. No.
Y 7440-65-5 24855941 23993 MFCD00011468  231-174-8 N/A [Y] InChI=1S/Y VWQVUPCCIRVNHF-UHFFFAOYSA-N

PROPERTIES Mol. Wt. Appearance Density Tensile Strength Melting Point Boiling Point Thermal Conductivity Electrical Resistivity Eletronegativity Specific Heat Heat of Vaporization Heat of Fusion MSDS
88.91 Silvery 4472 kg/m³ 67 MPa 1526 °C 3336 °C 0.172 W/cm/K @ 298.2 K  57.0 microhm-cm @ °C 1.3 Paulings  0.068 Cal/g/K @ 25 °C 93 K-Cal/gm atom at 3338 °C 4.10 Cal/gm mole  Safety Data Sheet

High Purity, D50 = +10 nanometer (nm) by SEMYttrium (Y) Nanoparticles, nanodots or nanopowder are black spherical high surface area particles. Nanoscale Yttrium Particles are typically 5 - 45 nanometers (nm) with specific surface area (SSA) in the 30 - 50 m 2 /g range and also available in with an average particle size of 75 - 100 nm range with a specific surface area of approximately 5 - 10 m 2 /g. Nano Yttrium Particles are also available in passivated and Ultra high purity and high purity and coated and dispersed forms. They are also available as a nanofluid through the AE Nanofluid production group. Nanofluids are generally defined as suspended nanoparticles in solution either using surfactant or surface charge technology. Nanofluid dispersion and coating selection technical guidance is also available. Other nanostructures include nanorods, nanowhiskers, nanohorns, nanopyramids and other nanocomposites. Surface functionalized nanoparticles allow for the particles to be preferentially adsorbed at the surface interface using chemically bound polymers.

Development research is underway in Nano Electronics and Photonics materials, such as MEMS and NEMS, Bio Nano Materials, such as Biomarkers, Bio Diagnostics & Bio Sensors, and Related Nano Materials, for use in Polymers, Textiles, Fuel Cell Layers, Composites and Solar Energy materials. Nanopowders are analyzed for chemical composition by ICP, particle size distribution (PSD) by laser diffraction, and for Specific Surface Area (SSA) by BET multi-point correlation techniques. Novel nanotechnology applications also include Quantum Dots. High surface areas can also be achieved using solutions and using thin film by sputtering targets and evaporation technology using pellets, rod and foil.. Research into applications for yttrium nanocrystals has focused on their potential electrical, magnetic, optical, catalytic, biomedical and bioscience properties and for use in coatings, plastics, nanowire, nanofiber and textiles and in alloy and catalyst applications . Yttrium Nano Particles are generally immediately available in most volumes. Additional technical, research and safety (MSDS) information is available.

Yttrium Bohr ModelYttrium (Y) atomic and molecular weight, atomic number and elemental symbolYttrium (atomic symbol: Y, atomic number: 39) is a Block D, Group 3, Period 5 element with an atomic weight of 88.90585. The number of electrons in each of yttrium's shells is [2, 8, 18, 9, 2] and its electron configuration is [Kr] 4d1 5s2. The yttrium atom has a radius of 180 pm and a Van der Waals radius of 219 pm. Yttrium was discovered by Johann Gadolin in 1794 and first isolated by Carl Gustav Mosander in 1840. Elemental Yttrium In its elemental form, Yttrium has a silvery white metallic appearance. Yttrium has the highest thermodynamic affinity for oxygen of any element. Yttrium is not found in nature as a free element and is almost always found combined with the lanthanides in rare earth minerals. While not part of the rare earth series, it resembles the heavy rare earths which are sometimes referred to as the "yttrics" for this reason. Another unique characteristic derives from its ability to form crystals with useful properties. The name yttrium originated from a Swedish village near Vaxholm called Yttbery where it was discovered. For more information on yttrium, including properties, safety data, research, and American Elements' catalog of yttrium products, visit the Yttrium element page.


Yttrium Foil Yttrium Pellets Yttrium Sputtering Target Yttrium Oxide Pellets Yttrium Acetate
Yttrium Metal Yttrium Wire Yttrium Chloride Yttrium Aluminum Alloy Yttrium Nitrate
Yttrium Nanoparticles Yttrium Oxide Yttrium Nickel Alloy Yttrium Chloride Yttrium Acetylacetonate
Show Me MORE Forms of Yttrium

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.

Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Yttrium

  • Introduction of an yttrium-manganese binary composite that has extremely high adsorption capacity for arsenate uptake in different water conditions. Yang Yu, Ling Yu, and J. Paul Chen. Ind. Eng. Chem. Res.: February 9, 2015
  • Rich Structural Chemistry in New Alkali Metal Yttrium Tellurites: Three-Dimensional Frameworks of NaYTe4O10, KY(TeO3)2, RbY(TeO3)2, and a Novel Variant of Hexagonal Tungsten Bronze, CsYTe3O8. Youngkwon Kim, Dong Woo Lee, and Kang Min Ok. Inorg. Chem.: December 17, 2014
  • Versatile Reactivity of Diketiminato-Supported Yttrium Dialkyl Complex toward Aromatic N-Heterocycles. Yin Zhang, Jie Zhang, Jianquan Hong, Fangjun Zhang, Linhong Weng, and Xigeng Zhou. Organometallics: December 2, 2014
  • Unprecedented 3,4-Isoprene and cis-1,4-Butadiene Copolymers with Controlled Sequence Distribution by Single Yttrium Cationic Species. Bo Liu, Xingbao Wang, Yupeng Pan, Fei Lin, Chunji Wu, Jingping Qu, Yi Luo, and Dongmei Cui. Macromolecules: December 1, 2014
  • Synthesis and Characterization of Amine-Bridged Bis(phenolate) Yttrium Guanidinates and Their Application in the Ring-Opening Polymerization of 1,4-Dioxan-2-one. Tinghua Zeng, Yaorong Wang, Qi Shen, Yingming Yao, Yunjie Luo, and Dongmei Cui. Organometallics: November 19, 2014
  • Versatile 2-Methoxyethylaminobis(phenolate)yttrium Catalysts: Catalytic Precision Polymerization of Polar Monomers via Rare Earth Metal-Mediated Group Transfer Polymerization. Peter T. Altenbuchner, Benedikt S. Soller, Stefan Kissling, Thomas Bachmann, Alexander Kronast, Sergei I. Vagin, and Bernhard Rieger. Macromolecules: November 10, 2014
  • Thermochromism in Yttrium Iron Garnet Compounds. Hélène Serier-Brault, Lucile Thibault, Magalie Legrain, Philippe Deniard, Xavier Rocquefelte, Philippe Leone, Jean-Luc Perillon, Stéphanie Le Bris, Jean Waku, and Stéphane Jobic. Inorg. Chem.: November 10, 2014
  • Solvothermal Synthesis and Luminescence Properties of Yttrium Aluminum Garnet Monodispersed Crystallites with Well-Developed Faces. Meng M. Xu, Zhi J. Zhang, Jun J. Zhu, Jing T. Zhao, and Xiang Y. Chen. J. Phys. Chem. C: October 31, 2014
  • Oxygen Vacancy Effect on Photoluminescence Properties of Self-Activated Yttrium Tungstate. Bangfu Ding, Haijiao Qian, Chao Han, Junying Zhang, Sten-Eric Lindquist, Bin Wei, and Zilong Tang. J. Phys. Chem. C: October 10, 2014
  • Structural and Spectroscopic Characterization of Nd3+-Doped YVO4 Yttrium Orthovanadate Nanocrystallites. Rafal J. Wiglusz, Lukasz Marciniak, Robert Pazik, and Wieslaw Strek. Crystal Growth & Design: October 3, 2014