0D/2D Heterojunctions of Vanadate Quantum Dots/Graphitic Carbon Nitride Nanosheets for Enhanced Visible-Light-Driven Photocatalysis.

Title 0D/2D Heterojunctions of Vanadate Quantum Dots/Graphitic Carbon Nitride Nanosheets for Enhanced Visible-Light-Driven Photocatalysis.
Authors M.Y. Ye; Z.H. Zhao; Z.F. Hu; L.Q. Liu; H.M. Ji; Z.R. Shen; T.Y. Ma
Journal Angew Chem Int Ed Engl
DOI 10.1002/anie.201611127
Abstract

0D/2D heterojunctions, especially quantum dots (QDs)/nanosheets (NSs) have attracted significant attention for use of photoexcited electrons/holes due to their high charge mobility. Herein, unprecedent heterojunctions of vanadate (AgVO3 , BiVO4 , InVO4 and CuV2 O6 ) QDs/graphitic carbon nitride (g-C3 N4 ) NSs exhibiting multiple unique advances beyond traditional 0D/2D composites have been developed. The photoactive contribution, up-conversion absorption, and nitrogen coordinating sites of g-C3 N4 NSs, highly dispersed vanadate nanocrystals, as well as the strong coupling and band alignment between them lead to superior visible-light-driven photoelectrochemical (PEC) and photocatalytic performance, competing with the best reported photocatalysts. This work is expected to provide a new concept to construct multifunctional 0D/2D nanocomposites for a large variety of opto-electronic applications, not limited in photocatalysis.

Citation M.Y. Ye; Z.H. Zhao; Z.F. Hu; L.Q. Liu; H.M. Ji; Z.R. Shen; T.Y. Ma.0D/2D Heterojunctions of Vanadate Quantum Dots/Graphitic Carbon Nitride Nanosheets for Enhanced Visible-Light-Driven Photocatalysis.. Angew Chem Int Ed Engl. 2017. doi:10.1002/anie.201611127

Related Elements

Carbon

See more Carbon products. Carbon (atomic symbol: C, atomic number: 6) is a Block P, Group 14, Period 2 element. Carbon Bohr ModelThe number of electrons in each of Carbon's shells is 2, 4 and its electron configuration is [He]2s2 2p2. In its elemental form, carbon can take various physical forms (known as allotropes) based on the type of bonds between carbon atoms; the most well known allotropes are diamond, graphite, amorphous carbon, glassy carbon, and nanostructured forms such as carbon nanotubes, fullerenes, and nanofibers . Carbon is at the same time one of the softest (as graphite) and hardest (as diamond) materials found in nature. It is the 15th most abundant element in the Earth's crust, and the fourth most abundant element (by mass) in the universe after hydrogen, helium, and oxygen. Carbon was discovered by the Egyptians and Sumerians circa 3750 BC. It was first recognized as an element by Antoine Lavoisier in 1789.

Vanadium

See more Vanadium products. Vanadium (atomic symbol: V, atomic number: 23) is a Block D, Group 5, Period 4 element with an atomic weight of 50.9415. Vanadium Bohr ModelThe number of electrons in each of Vanadium's shells is 2, 8, 11, 2 and its electron configuration is [Ar] 3d3 4s2. The vanadium atom has a radius of 134 pm and a Van der Waals radius of 179 pm. Vanadium was discovered by Andres Manuel del Rio in 1801 and first isolated by Nils Gabriel Sefström in 1830. In its elemental form, vanadium has a bluish-silver appearance. Elemental VanadiumIt is a hard, ductile transition metal that is primarily used as a steel additive and in alloys such as Titanium-6AL-4V, which is composed of titanium, aluminum, and vanadium and is the most common titanium alloy commercially produced. Vanadium is found in fossil fuel deposits and 65 different minerals. Vanadium is not found free in nature; however, once isolated it forms an oxide layer that stabilizes the free metal against further oxidation. Vanadium was named after the word "Vanadis" meaning goddess of beauty in Scandinavian mythology.

Nitrogen

See more Nitrogen products. Nitrogen is a Block P, Group 15, Period 2 element. Its electron configuration is [He]2s22p3. Nitrogen is an odorless, tasteless, colorless and mostly inert gas. It is the seventh most abundant element in the universe and it constitutes 78.09% (by volume) of Earth's atmosphere. Nitrogen was discovered by Daniel Rutherford in 1772.

Related Forms & Applications