Ammonium Tetrathiomolybdate

(NH4)2MoS4

Request a Quote

Product Code Product Request Quote
AM-THMO-02 (2N) 99% Ammonium Tetrathiomolybdate Request
AM-THMO-03 (3N) 99.9% Ammonium Tetrathiomolybdate Request
AM-THMO-04 (4N) 99.99% Ammonium Tetrathiomolybdate Request
AM-THMO-05 (5N) 99.999% Ammonium Tetrathiomolybdate Request

About

Ammonium Tetrathiomolybdate is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Synonyms

Diammonium disulfido(dithioxo)molybdenum; Ammonium molybdenum sulfide; Diammonium tetrathioxomolybdate(2-); diammonium molybdenum tetrasulfide; Thiomolybdic acid, diammonium salt; Molybdate(2-), tetrathioxo-, diammonium, (T-4)-

Chemical Identifiers

Formula (NH4)2MoS4
CAS 15060-55-6
Pubchem CID 10106661
MDL MFCD00136013
EC No. N/A
IUPAC Name diazanium; molybdenum; tetrasulfide
Beilstein Registry No. N/A
SMILES [S-2].[S-2].[S-2].[S-2].[Mo].[NH4+].[NH4+]
InchI Identifier InChI=1S/Mo.2H3N.4S/h;2*1H3;;;;/q;;;4*-2/p+2
InchI Key SSWUEGNZIONBHZ-UHFFFAOYSA-P

Properties

Compound Formula H8MoN2S4
Molecular Weight 260.28
Appearance Red. green, purple, or black powder
Melting Point >300 °C
Boiling Point N/A
Density N/A
Exact Mass 261.86244
Monoisotopic Mass 261.86244
Charge -6

Health & Safety Info  |  MSDS / SDS

Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
Risk Codes N/A
Safety Statements N/A
Transport Information N/A
Globally Harmonized System of Classification and Labelling (GHS) N/A
MSDS / SDS

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.

Related Products

MoSee more Molybdenum products. Molybdenum (atomic symbol: Mo, atomic number: 42) is a Block D, Group 6, Period 5 element with an atomic weight of 95.96. The number of electrons in each of molybdenum's shells is [2, 8, 18, 13, 1] and its electron configuration is [Kr] 4d5 5s1. The molybdenum atom has a radius of 139 pm and a Van der Waals radius of 209 pm. In its elemental form, molybdenum has a gray metallic appearance. Molybdenum was discovered by Carl Wilhelm in 1778 and first isolated by Peter Jacob Hjelm in 1781. Molybdenum is the 54th most abundant element in the earth's crust. It has the third highest melting point of any element, exceeded only by tungsten and tantalum. Molybdenum does not occur naturally as a free metal, it is found in various oxidation states in minerals. The primary commercial source of molybdenum is molybdenite, although it is also recovered as a byproduct of copper and tungsten mining. The origin of the name Molybdenum comes from the Greek word molubdos meaning lead.

SSee more Sulfur products. Sulfur (or Sulphur) (atomic symbol: S, atomic number: 16) is a Block P, Group 16, Period 3 element with an atomic radius of 32.066. The number of electrons in each of Sulfur's shells is 2, 8, 6 and its electron configuration is [Ne] 3s2 3p4. In its elemental form, sulfur has a light yellow appearance. The sulfur atom has a covalent radius of 105 pm and a Van der Waals radius of 180 pm. In nature, sulfur can be found in hot springs, meteorites, volcanoes, and as galena, gypsum, and epsom salts. Sulfur has been known since ancient times but was not accepted as an element until 1777, when Antoine Lavoisier helped to convince the scientific community that it was an element and not a compound.

Research

Recent Research & Development for Sulfur

  • Induction and repair of DNA cross-links induced by sulfur mustard in the A-549 cell line followed by a comet assay. Jost P, Svobodova H, Stetina R. Chem Biol Interact. 2015 May 15
  • Thiol activated prodrugs of sulfur dioxide (SO2) as MRSA inhibitors. Pardeshi KA, Malwal SR, Banerjee A, Lahiri S, Rangarajan R, Chakrapani H. Bioorg Med Chem Lett. 2015 Apr 23.
  • A simple approach to the synthesis of Cu1.8S dendrites with thiamine hydrochloride as a sulfur source and structure-directing agent. Yan X, Li S, Pan YX, Yang Z, Liu X. Beilstein J Nanotechnol. 2015 Apr 1
  • Enabling Prominent High-Rate and Cycle Performances in One Lithium-Sulfur Battery: Designing Permselective Gateways for Li+ Transportation in Holey-CNT/S Cathodes. Zhou Y, Zhou C, Li Q, Yan C, Han B, Xia K, Gao Q, Wu J. Adv Mater. 2015 May 20.
  • Nanospace-Confinement Copolymerization Strategy for Encapsulating Polymeric Sulfur into Porous Carbon for Lithium-Sulfur Batteries. Ding B, Chang Z, Xu G, Nie P, Wang J, Pan J, Dou H, Zhang X. ACS Appl Mater Interfaces. 2015 May 22.
  • Hydrophilicity-controlled ordered mesoporous carbon for lithium-sulfur batteries. Bae S, Jin X, Park GO, Kim JM. J Nanosci Nanotechnol. 2014 Dec
  • Vertically Aligned Sulfur-Graphene Nanowalls on Substrates for Ultrafast Lithium-Sulfur Batteries. Li B, Li S, Liu J, Wang B, Yang S. Nano Lett. 2015 Apr 10. : Nano Lett
  • Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments. Hansel CM, Lentini CJ, Tang Y, Johnston DT, Wankel SD, Jardine PM. ISME J. 2015 Apr 14.: ISME J
  • Interaction between Nitrogen and Sulfur in Co-Doped Graphene and Synergetic Effect in Supercapacitor. Wang T, Wang LX, Wu DL, Xia W, Jia DZ. Sci Rep. 2015 Apr 16: Sci Rep
  • Protic-Salt-Derived Nitrogen/Sulfur-Codoped Mesoporous Carbon for the Oxygen Reduction Reaction and Supercapacitors. Zhang S, Ikoma A, Ueno K, Chen Z, Dokko K, Watanabe M. ChemSusChem. 2015 Apr 8.: ChemSusChem
  • Encapsulation of S/SWNT with PANI Web for Enhanced Rate and Cycle Performance in Lithium Sulfur Batteries. Kim JH, Fu K, Choi J, Kil K, Kim J, Han X, Hu L, Paik U. Sci Rep. 2015 Mar 10

Recent Research & Development for Molybdenum

  • Lignin-assisted exfoliation of molybdenum disulfide in aqueous media and its application in lithium ion batteries. Liu W, Zhao C, Zhou R, Zhou D, Liu Z, Lu X. Nanoscale. 2015 May 21
  • Interplay between Organic-Organometallic Electrophores within Bis(cyclopentadienyl)Molybdenum Dithiolene Tetrathiafulvalene Complexes. Bellec N, Vacher A, Barrière F, Xu Z, Roisnel T, Lorcy D. Inorg Chem. 2015 May 18
  • 2D Materials: The Influence of Water on the Optical Properties of Single-Layer Molybdenum Disulfide (Adv. Mater. 17/2015). Varghese JO, Agbo P, Sutherland AM, Brar VW, Rossman GR, Gray HB, Heath JR. Adv Mater. 2015 May
  • Basal-Plane Functionalization of Chemically Exfoliated Molybdenum Disulfide by Diazonium Salts. Knirsch KC, Berner NC, Nerl HC, Cucinotta CS, Gholamvand Z, McEvoy N, Wang Z, Abramovic I, Vecera P, Halik M, Sanvito S, Duesberg GS, Nicolosi V, Hauke F, Hirsch A, Coleman JN, Backes C. ACS Nano. 2015 May 20.
  • Oscillatory motion in layered materials: graphene, boron nitride, and molybdenum disulfide. Ye Z, Otero-de-la-Roza A, Johnson ER, Martini A. Nanotechnology. 2015 Apr 24: Nanotechnology
  • Towards Barrier Free Contact to Molybdenum Disulfide using Graphene Electrodes. Liu Y, Wu H, Cheng HC, Yang S, Zhu E, He Q, Ding M, Li D, Guo J, Weiss N, Huang Y, Duan X. Nano Lett. 2015 Apr 16. : Nano Lett
  • Synthesis of nanostructured clean surface molybdenum carbides on graphene sheets as efficient and stable hydrogen evolution reaction catalysts. He C, Tao J. Chem Commun (Camb). 2015 Apr 16. : Chem Commun (Camb)
  • Synthesis of Waste Cooking Oil Based Biodiesel via Ferric-Manganese Promoted Molybdenum Oxide / Zirconia Nanoparticle Solid acid Catalyst: Influence of Ferric and Manganese Dopants. Alhassan FH, Rashid U, Taufiq-Yap YH. J Oleo Sci. 2015 Apr 6. : J Oleo Sci
  • Fate and Transport of Molybdenum Disulfide Nanomaterials in Sand Columns. Lanphere JD, Luth CJ, Guiney LM, Mansukhani ND, Hersam MC, Walker SL. Environ Eng Sci. 2015 Feb 1
  • Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production. Wu HB, Xia BY, Yu L, Yu XY, Lou XW. Nat Commun. 2015 Mar 11

Recent Research & Development for Molybdates

  • Adsorption of molybdate on molybdate-imprinted chitosan/triethanolamine gel beads. Zhang L, Xue J, Zhou X, Fei X, Wang Y, Zhou Y, Zhong L, Han X. Carbohydr Polym. 2014 Dec 19
  • Sodium molybdate - an additive of choice for enhancing the performance of AC/AC electrochemical capacitors in a salt aqueous electrolyte. Abbas Q, Ratajczak P, Béguin F. Faraday Discuss. 2014
  • Acquisition and role of molybdate in Pseudomonas aeruginosa. Pederick VG, Eijkelkamp BA, Ween MP, Begg SL, Paton JC, McDevitt CA. Appl Environ Microbiol. 2014 Nov
  • Developmental toxicity study of sodium molybdate dihydrate administered in the diet to Sprague Dawley rats. Jay Murray F, Tyl RW, Sullivan FM, Tiwary AK, Carey S. Reprod Toxicol. 2014 Sep 16
  • One-step synthesis of bismuth molybdate catalysts via flame spray pyrolysis for the selective oxidation of propylene to acrolein. Schuh K, Kleist W, Høj M, Trouillet V, Jensen AD, Grunwaldt JD. Chem Commun (Camb). 2014 Dec 18
  • Fabrication of La2Ti2O7 Crystals Using an Alkali-Metal Molybdate Flux Growth Method and Their Nitridability To Form LaTiO2N Crystals under a High-Temperature NH3 Atmosphere. Hojamberdiev M, Yamaguchi A, Yubuta K, Oishi S, Teshima K. Inorg Chem. 2015 Apr 6
  • Novel yolk-shell structure bismuth-rich bismuth molybdate microspheres for enhanced visible light photocatalysis. Li J, Liu X, Sun Z, Sun Y, Pan L. J Colloid Interface Sci. 2015 Aug 15
  • Hepatoprotective and antifibrotic effects of sodium molybdate in a rat model of bile duct ligation. Ale-Ebrahim M, Eidi A, Mortazavi P, Tavangar SM, Tehrani DM. J Trace Elem Med Biol. 2015 Jan
  • Fabrication of La2Ti2O7 Crystals Using an Alkali-Metal Molybdate Flux Growth Method and Their Nitridability To Form LaTiO2N Crystals under a High-Temperature NH3 Atmosphere. Hojamberdiev M, Yamaguchi A, Yubuta K, Oishi S, Teshima K. Inorg Chem. 2015 Apr 6: Inorg Chem
  • One-step synthesis of bismuth molybdate catalysts via flame spray pyrolysis for the selective oxidation of propylene to acrolein. Schuh K, Kleist W, Høj M, Trouillet V, Jensen AD, Grunwaldt JD. Chem Commun (Camb). 2014 Dec 18

Free Test Sample Program

We recognize many of our customers are purchasing small quantities directly online as trial samples in anticipation of placing a larger future order or multiple orders as a raw material for production. Since our primary business is the production of industrial quantities and/or highly consistent batches which can be used for commercial production and purchased repeatedly in smaller quantity, American Elements offers trial samples at no charge on the following basis. Within 6 months of purchasing materials directly online from us, you have the option to refer back to that order and advise that it is the intention of your company, institution or lab to either purchase a larger quantity, purchase the material in regular intervals or purchase more on some other basis.

We will then evaluate your future needs and assuming the quantity or number of future purchases qualify, we will fully credit your purchase price with the next order. Because of the many variables in the quantity and number of orders you may place, it is impossible to evaluate whether your future order(s) will qualify for this program prior to your placing your next order. Please know American Elements strongly desires to make this free sample program available to you and will make every effort to do so once your next order is placed.