20th anniversary seal20th anniversary seal20th anniversary seal

Cerium Iron Oxide Hydroxide Nanoparticle Dispersion

Linear Formula:

CeFeHO4

ORDER

PRODUCT Product Code ORDER SAFETY DATA TECHNICAL DATA
Cerium Iron Oxide Hydroxide Nanoparticle Dispersion
CEFE-OOH-01-NPD
Pricing > SDS > Data Sheet >

Cerium Iron Oxide Hydroxide Nanoparticle Dispersion Properties (Theoretical)

Compound Formula CeFeHO4
Molecular Weight 260.97
Appearance Liquid dispersion
Melting Point Varies by solvent
Boiling Point Varies by solvent
Density Varies by solvent
Solubility in H2O N/A

Cerium Iron Oxide Hydroxide Nanoparticle Dispersion Health & Safety Information

Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
Transport Information NONH for all modes of transport
WGK Germany 3
MSDS / SDS

About Cerium Iron Oxide Hydroxide Nanoparticle Dispersion

Cerium Iron Oxide Hydroxide Nanoparticle Dispersions are suspensions of cerium iron oxide hydroxide nanoparticles in water or various organic solvents such as ethanol or mineral oil. American Elements manufactures oxide nanopowders and nanoparticles with typical particle sizes ranging from 10 to 200nm and in coated and surface functionalized forms. Our nanodispersion and nanofluid experts can provide technical guidance for selecting the most appropriate particle size, solvent, and coating material for a given application. We can also produce custom nanomaterials tailored to the specific requirements of our customers upon request.

Cerium Iron Oxide Hydroxide Nanoparticle Dispersion Synonyms

Cerium iron mixed metal oxide nanoparticle dispersion, Cerium iron oxide hydroxide aqueous nanoparticle dispersion

Chemical Identifiers

Linear Formula CeFeHO4
MDL Number N/A
EC No. N/A

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Related Elements

See more Cerium products. Cerium (atomic symbol: Ce, atomic number: 58) is a Block F, Group 3, Period 6 element with an atomic weight of 140.116. The number of electrons in each of cerium's shells is 2, 8, 18, 19, 9, 2 and its electron configuration is [Xe]4f2 6s2. Cerium Bohr ModelThe cerium atom has a radius of 182.5 pm and a Van der Waals radius of 235 pm. In its elemental form, cerium has a silvery white appearance. Cerium is the most abundant of the rare earth metals. It is characterized chemically by having two valence states, the +3 cerous and +4 ceric states. The ceric state is the only non-trivalent rare earth ion stable in aqueous solutions. Elemental CeriumIt is, therefore, strongly acidic and moderately toxic. It is also a strong oxidizer. The cerous state closely resembles the other trivalent rare earths. Cerium is found in the minerals allanite, bastnasite, hydroxylbastnasite, monazite, rhabdophane, synchysite and zircon. Cerium was discovered by Martin Heinrich Klaproth, Jöns Jakob Berzelius, and Wilh elm Hisinger in 1803 and first isolated by Carl Gustaf Mosander in 1839. The element was named after the asteroid Ceres.

See more Iron products. Iron (atomic symbol: Fe, atomic number: 26) is a Block D, Group 8, Period 4 element with an atomic weight of 55.845. The number of electrons in each of Iron's shells is 2, 8, 14, 2 and its electron configuration is [Ar] 3d6 4s2. Iron Bohr ModelThe iron atom has a radius of 126 pm and a Van der Waals radius of 194 pm. Iron was discovered by humans before 5000 BC. In its elemental form, iron has a lustrous grayish metallic appearance. Iron is the fourth most common element in the Earth's crust and the most common element by mass forming the earth as a whole. Iron is rarely found as a free element, since it tends to oxidize easily; it is usually found in minerals such as magnetite, hematite, goethite, limonite, or siderite.Elemental Iron Though pure iron is typically soft, the addition of carbon creates the alloy known as steel, which is significantly stronger.

TODAY'S SCIENCE POST!

October 15, 2019
Los Angeles, CA
Each business day American Elements' scientists & engineers post their choice for the most exciting materials science news of the day

New research integrates borophene and graphene into 2-D heterostructures