Effect of the CuO addition on a Sb-doped SnO ceramic electrode applied to the removal of Norfloxacin in chloride media by electro-oxidation.

Title Effect of the CuO addition on a Sb-doped SnO ceramic electrode applied to the removal of Norfloxacin in chloride media by electro-oxidation.
Authors J. Carrillo-Abad; J. Mora-Gómez; M. García-Gabaldón; E. Ortega; S. Mestre; V. Pérez-Herranz
Journal Chemosphere
DOI 10.1016/j.chemosphere.2020.126178
Abstract

Norfloxacin is employed as in veterinary and human medicine against gram-positive and gram-negative bacteria. Due to the ineffective treatment at the wastewater treatment plants it becomes an emergent pollutant. Electro-oxidation appears as an alternative to its effective mineralization. This work compares Norfloxacin electro-oxidation on different anodic materials: two ceramic electrodes (both based on SnO + SbO with and without CuO, named as CuO and BCE, respectively) and a boron doped diamond (BDD). First, the anodes were characterized by cyclic voltammetry, revealing that NOR direct oxidation occurred at 1.30 V vs. Ag/AgCl. The higher the scan rate the higher both the current density and the anodic potential of the peak. This behavior was analyzed using the Randles-Sevcik equation to calculate the Norfloxacin diffusion coefficient in aqueous media, giving a value of D = 7.80 × 10 cm s at 25 °C), which is close to the predicted value obtained using the Wilke-Chang correlation. The electrolysis experiments showed that both NOR and TOC decay increased with the applied current density, presenting a pseudo-first order kinetic. All the anodes tested achieved more than 90% NOR degradation at each current density. The CuO is not a good alternative to BCE because although it acts as a catalyst during the first use, it is lost from the anode surface in the subsequent uses. According to their oxidizing power, the anodes employed are ordered as follows: BDD > BCE > CuO.

Citation J. Carrillo-Abad; J. Mora-Gómez; M. García-Gabaldón; E. Ortega; S. Mestre; V. Pérez-Herranz.Effect of the CuO addition on a Sb-doped SnO ceramic electrode applied to the removal of Norfloxacin in chloride media by electro-oxidation.. Chemosphere. 2020;249:126178. doi:10.1016/j.chemosphere.2020.126178

Related Elements

Antimony

See more Antimony products. Antimony (atomic symbol: Sb, atomic number: 51) is a Block P, Group 15, Period 5 element with an atomic radius of 121.760. Antimony Bohr Model The number of electrons in each of antimony's shells is 2, 8, 18, 18, 5 and its electron configuration is [Kr] 4d10 5s2 5p3. The antimony atom has a radius of 140 pm and a Van der Waals radius of 206 pm. Antimony was discovered around 3000 BC and first isolated by Vannoccio Biringuccio in 1540 AD. In its elemental form, antimony has a silvery lustrous gray appearance. Elemental Antimony The most common source of antimony is the sulfide mineral known as stibnite (Sb2S3), although it sometimes occurs natively as well. Antimony has numerous applications, most commonly in flame-retardant materials. It also increases the hardness and strength of lead when combined in an alloy and is frequently employed as a dopant in semiconductor materials. Its name is derived from the Greek words anti and monos, meaning a metal not found by itself.

Copper

See more Copper products. Copper Bohr Model Copper (atomic symbol: Cu, atomic number: 29) is a Block D, Group 11, Period 4 element with an atomic weight of 63.546. The number of electrons in each of copper's shells is 2, 8, 18, 1 and its electron configuration is [Ar]3d10 4s1. The copper atom has a radius of 128 pm and a Van der Waals radius of 186 pm. Copper was first discovered by Early Man prior to 9000 BC. In its elemental form, copper has a reddish-orange metallic and lustrous appearance. Of all pure metals, only silver Elemental Copperhas a higher electrical conductivity. The origin of the word copper comes from the Latin word 'cuprium' which translates as "metal of Cyprus," as the Mediterranean island of Cyprus was known as an ancient source of mined copper..

Tin

Tin Bohr ModelSee more Tin products. Tin (atomic symbol: Sn, atomic number: 50) is a Block P, Group 14, Period 5 element with an atomic weight of 118.710. The number of electrons in each of tin's shells is 2, 8, 18, 18, 4 and its electron configuration is [Kr] 4d10 5s2 5p2. The tin atom has a radius of 140.5 pm and a Van der Waals radius of 217 pm.In its elemental form, tin has a silvery-gray metallic appearance. It is malleable, ductile and highly crystalline. High Purity (99.9999%) Tin (Sn) MetalTin has nine stable isotopes and 18 unstable isotopes. Under 3.72 degrees Kelvin, Tin becomes a superconductor. Applications for tin include soldering, plating, and such alloys as pewter. The first uses of tin can be dated to the Bronze Age around 3000 BC in which tin and copper were combined to make the alloy bronze. The origin of the word tin comes from the Latin word Stannum which translates to the Anglo-Saxon word tin. For more information on tin, including properties, safety data, research, and American Elements' catalog of tin products, visit the Tin element page.

Related Forms & Applications