Molybdenum Oxide Powder

CAS #

MoO3

Buy Now Laboratory, Research & Small Quantities Free Sample Program* Cost per volume is lower for bulk and term contract purchases. See Request A Quote below.

Product Code Product Price Add to Cart
MO6-OX-038-P >99.98% (Trace Metals Basis) Molybdenum(VI) Oxide  -  $215.20
Powder
25g
$215.20
Product Code Product Request Quote
MO-OX-02-P (2N) 99% Molybdenum Oxide Powder Request
MO-OX-03-P (3N) 99.9% Molybdenum Oxide Powder Request
MO-OX-04-P (4N) 99.99% Molybdenum Oxide Powder Request
MO-OX-05-P (5N) 99.999% Molybdenum Oxide Powder Request

About

Oxide IonAmerican Elements specializes in producing spray dry and non-spray dry high purity Molybdenum Powder with the smallest possible average grain sizes for use in preparation of pressed and bonded sputtering targets and in Chemical Vapor Deposition (CVD) and Physical Vapor Deposition (PVD) processes including Thermal and Electron Beam (E-Beam) Evaporation, LowHigh Purity (99.999%) Molybdenum Oxide (MoO3) Powder Temperature Organic Evaporation, Atomic Layer Deposition (ALD), Metallic-Organic and Chemical Vapor Deposition (MOCVD). Powders are also useful in any application where high surface areas are desired such as water treatment and in fuel cell and solar applications. Nanoparticles also produce very high surface areas. Our standard Powder particle sizes average in the range of - 325 mesh, - 100 mesh, 10-50 microns and submicron (< 1 micron) and our spray dried powder with binder provides an extremely narrow particle size distribution (PSD) for use in thermal and plasma spray guns and other coating applications. We can also provide many materials in the nanoscale range. We also produce Molybdenum Oxide as pellets, pieces, tablets, and sputtering target. Oxide compounds are not conductive to electricity. However, certain perovskite structured oxides are electronically conductive finding application in the cathode of solid oxide fuel cells and oxygen generation systems. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. See safety data and research below and pricing/lead time above. Other shapes are available by request.

Synonyms

Molybdenum trioxide, Molybdena, Natural molybdite, Dioxomolybdenum, Molybdic oxide, Molybdenum(VI) oxide, Trioxomolybdenum, Molybdenum anhydride, Molybdic anhydride, Molybdic anhydride, Natural molybdite, Diketomolybdenum, Molybdic acid anhydride

Chemical Identifiers

Formula MoO3
CAS 1313-27-5
Pubchem CID 14802
MDL MFCD00003469
EC No. 215-204-7
IUPAC Name trioxomolybdenum
Beilstein Registry No. N/A
SMILES O=[Mo](=O)=O
InchI Identifier InChI=1S/Mo.3O
InchI Key JKQOBWVOAYFWKG-UHFFFAOYSA-N

Properties

Compound Formula MoO3
Molecular Weight 143.94
Appearance Powder
Melting Point 795 °C (1463 °F)
Boiling Point 1155 °C (2111 °F)
Density 6.47 g/cm3
Exact Mass 145.89
Monoisotopic Mass 145.89

Health & Safety Info  |  MSDS / SDS

Signal Word Warning
Hazard Statements H319-H335-H351
Hazard Codes Xn
Risk Codes 36/37-48/20/22
Safety Statements 22-23
RTECS Number QA4725000
Transport Information UN 3288 6.1/PG 3
WGK Germany 3
Globally Harmonized System of Classification and Labelling (GHS) N/A
MSDS / SDS

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.

Related Products

MoSee more Molybdenum products. Molybdenum (atomic symbol: Mo, atomic number: 42) is a Block D, Group 6, Period 5 element with an atomic weight of 95.96. The number of electrons in each of molybdenum's shells is [2, 8, 18, 13, 1] and its electron configuration is [Kr] 4d5 5s1. The molybdenum atom has a radius of 139 pm and a Van der Waals radius of 209 pm. In its elemental form, molybdenum has a gray metallic appearance. Molybdenum was discovered by Carl Wilhelm in 1778 and first isolated by Peter Jacob Hjelm in 1781. Molybdenum is the 54th most abundant element in the earth's crust. It has the third highest melting point of any element, exceeded only by tungsten and tantalum. Molybdenum does not occur naturally as a free metal, it is found in various oxidation states in minerals. The primary commercial source of molybdenum is molybdenite, although it is also recovered as a byproduct of copper and tungsten mining. The origin of the name Molybdenum comes from the Greek word molubdos meaning lead.

Research

Recent Research & Development for Molybdenum

  • Lignin-assisted exfoliation of molybdenum disulfide in aqueous media and its application in lithium ion batteries. Liu W, Zhao C, Zhou R, Zhou D, Liu Z, Lu X. Nanoscale. 2015 May 21
  • Interplay between Organic-Organometallic Electrophores within Bis(cyclopentadienyl)Molybdenum Dithiolene Tetrathiafulvalene Complexes. Bellec N, Vacher A, Barrière F, Xu Z, Roisnel T, Lorcy D. Inorg Chem. 2015 May 18
  • 2D Materials: The Influence of Water on the Optical Properties of Single-Layer Molybdenum Disulfide (Adv. Mater. 17/2015). Varghese JO, Agbo P, Sutherland AM, Brar VW, Rossman GR, Gray HB, Heath JR. Adv Mater. 2015 May
  • Basal-Plane Functionalization of Chemically Exfoliated Molybdenum Disulfide by Diazonium Salts. Knirsch KC, Berner NC, Nerl HC, Cucinotta CS, Gholamvand Z, McEvoy N, Wang Z, Abramovic I, Vecera P, Halik M, Sanvito S, Duesberg GS, Nicolosi V, Hauke F, Hirsch A, Coleman JN, Backes C. ACS Nano. 2015 May 20.
  • Oscillatory motion in layered materials: graphene, boron nitride, and molybdenum disulfide. Ye Z, Otero-de-la-Roza A, Johnson ER, Martini A. Nanotechnology. 2015 Apr 24: Nanotechnology
  • Towards Barrier Free Contact to Molybdenum Disulfide using Graphene Electrodes. Liu Y, Wu H, Cheng HC, Yang S, Zhu E, He Q, Ding M, Li D, Guo J, Weiss N, Huang Y, Duan X. Nano Lett. 2015 Apr 16. : Nano Lett
  • Synthesis of nanostructured clean surface molybdenum carbides on graphene sheets as efficient and stable hydrogen evolution reaction catalysts. He C, Tao J. Chem Commun (Camb). 2015 Apr 16. : Chem Commun (Camb)
  • Synthesis of Waste Cooking Oil Based Biodiesel via Ferric-Manganese Promoted Molybdenum Oxide / Zirconia Nanoparticle Solid acid Catalyst: Influence of Ferric and Manganese Dopants. Alhassan FH, Rashid U, Taufiq-Yap YH. J Oleo Sci. 2015 Apr 6. : J Oleo Sci
  • Fate and Transport of Molybdenum Disulfide Nanomaterials in Sand Columns. Lanphere JD, Luth CJ, Guiney LM, Mansukhani ND, Hersam MC, Walker SL. Environ Eng Sci. 2015 Feb 1
  • Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production. Wu HB, Xia BY, Yu L, Yu XY, Lou XW. Nat Commun. 2015 Mar 11

Recent Research & Development for Oxides

  • Nickel oxide and carbon nanotube composite (NiO/CNT) as a novel cathode non-precious metal catalyst in microbial fuel cells. Huang J, Zhu N, Yang T, Zhang T, Wu P, Dang Z. Biosens Bioelectron. 2015 May 14
  • Pilot in vivo investigation of cerium oxide nanoparticles as a novel anti-obesity pharmaceutical formulation. Rocca A, Moscato S, Ronca F, Nitti S, Mattoli V, Giorgi M, Ciofani G. Nanomedicine. 2015 May 20.
  • Graphene electrode modified with electrochemically reduced graphene oxide for label-free DNA detection. Li B, Pan G, Avent ND, Lowry RB, Madgett TE, Waines PL. Biosens Bioelectron. 2015 May 14
  • Efficient activation of peroxymonosulfate by manganese oxide for the degradation of azo dye at ambient condition. Tang D, Zhang G, Guo S. J Colloid Interface Sci. 2015 May 14
  • Functionalized magnetic iron oxide/alginate core-shell nanoparticles for targeting hyperthermia. Liao SH, Liu CH, Bastakoti BP, Suzuki N, Chang Y, Yamauchi Y, Lin FH, Wu KC. Int J Nanomedicine. 2015 May 4
  • Growth and properties of well-crystalline cerium oxide (CeO2) nanoflakes for environmental and sensor applications. Umar A, Kumar R, Akhtar MS, Kumar G, Kim SH. J Colloid Interface Sci. 2015 May 7
  • Application of iron oxide anoparticles in neuronal tissue engineering. Ziv-Polat O, Margel S, Shahar A. Neural Regen Res. 2015 Feb: Neural Regen Res
  • Multiplexed enzyme-free electrochemical immunosensor based on ZnO nanorods modified reduced graphene oxide-paper electrode and silver deposition-induced signal amplification strategy. Sun G, Zhang L, Zhang Y, Yang H, Ma C, Ge S, Yan M, Yu J, Song X. Biosens Bioelectron. 2015 Apr 8: Biosens Bioelectron
  • Stem cells labeled with superparamagnetic iron oxide nanoparticles in a preclinical model of cerebral ischemia: a systematic review with meta-analysis. Nucci LP, Silva HR, Giampaoli V, Mamani JB, Nucci MP, Gamarra LF. Stem Cell Res Ther. 2015 Mar 13: Stem Cell Res Ther
  • Micron-sized iron oxide-containing particles for microRNA-targeted manipulation and MRI-based tracking of transplanted cells. Leder A, Raschzok N, Schmidt C, Arabacioglu D, Butter A, Kolano S, de Sousa Lisboa LS, Werner W, Polenz D, Reutzel-Selke A, Pratschke J, Sauer IM. Biomaterials. 2015 May

Free Test Sample Program

We recognize many of our customers are purchasing small quantities directly online as trial samples in anticipation of placing a larger future order or multiple orders as a raw material for production. Since our primary business is the production of industrial quantities and/or highly consistent batches which can be used for commercial production and purchased repeatedly in smaller quantity, American Elements offers trial samples at no charge on the following basis. Within 6 months of purchasing materials directly online from us, you have the option to refer back to that order and advise that it is the intention of your company, institution or lab to either purchase a larger quantity, purchase the material in regular intervals or purchase more on some other basis.

We will then evaluate your future needs and assuming the quantity or number of future purchases qualify, we will fully credit your purchase price with the next order. Because of the many variables in the quantity and number of orders you may place, it is impossible to evaluate whether your future order(s) will qualify for this program prior to your placing your next order. Please know American Elements strongly desires to make this free sample program available to you and will make every effort to do so once your next order is placed.