Molybdenum Sulfide

CAS #

MoS2

Request a Quote

Product Code Product Request Quote
MO-S-02 (2N) 99% Molybdenum Sulfide Request
MO-S-025 (2N5) 99.5% Molybdenum Sulfide Request
MO-S-03 (3N) 99.9% Molybdenum Sulfide Request
MO-S-035 (3N5) 99.95% Molybdenum Sulfide Request
MO-S-04 (4N) 99.99% Molybdenum Sulfide Request
MO-S-05 (5N) 99.999% Molybdenum Sulfide Request

About

Sulfide IonMolybdenum Sulfide or Molybdenum Disulfide is a moderately water and acid soluble Molybdenum source for uses compatible with sulfates. Sulfate compounds are salts or esters of sulfuric acid formed by replacing one or both of the hydrogens with a metal. Most metal sulfate compounds are readily soluble in water for uses such as water treatment, unlike fluorides and oxides which tend to be insoluble. Organometallic forms are soluble in organic solutions and sometimes in both aqueous and organic solutions. Metallic ions can also be dispersed utilizing suspended or coated nanoparticles and deposited utilizing sputtering targets and evaporation materials for uses such as solar energy materials and fuel cells. Molybdenum Sulfide is generally immediately available in most volumes. Ultra high purity and high purity compositions improve both optical quality and usefulness as scientific standards. Nanoscale elemental powders and suspensions, as alternative high surface area forms, may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopeia/British Pharmacopeia) and follows applicable ASTM testing standards. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Synonyms

Molybdenum(IV) sulfide, Molybdenite, Molykote, hydrogen sulfide; molybdenum, Molybdenum disulphide, Molykote, bis(sulfanylidene)molybdenum, Molysulfide, Nichimoly C, Sumipowder PA, Molykote Z, disulfanylidene molybdenum, dithioxomolybdenum, molybdenum disulfide

Chemical Identifiers

Formula MoS2
CAS 1317-33-5
Pubchem CID 14823
MDL MFCD00003470
EC No. 215-263-9
IUPAC Name bis(sulfanylidene)molybdenum
Beilstein Registry No. N/A
SMILES [Mo].S
InchI Identifier InChI=1S/Mo. H2S/h;1H2
InchI Key QYSJWHFJGCFRDE-UHFFFAOYSA-N

Properties

Compound Formula MoS2
Molecular Weight 160.07
Appearance black solid
Melting Point 1,185° C (2,165° F)
Boiling Point N/A
Density 5.06 g/cm3
Exact Mass 161.849549
Monoisotopic Mass 161.849549

Health & Safety Info  |  MSDS / SDS

Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
Risk Codes N/A
Safety Statements N/A
Transport Information N/A
Globally Harmonized System of Classification and Labelling (GHS) N/A
MSDS / SDS

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.

Related Products

MoSee more Molybdenum products. Molybdenum (atomic symbol: Mo, atomic number: 42) is a Block D, Group 6, Period 5 element with an atomic weight of 95.96. The number of electrons in each of molybdenum's shells is [2, 8, 18, 13, 1] and its electron configuration is [Kr] 4d5 5s1. The molybdenum atom has a radius of 139 pm and a Van der Waals radius of 209 pm. In its elemental form, molybdenum has a gray metallic appearance. Molybdenum was discovered by Carl Wilhelm in 1778 and first isolated by Peter Jacob Hjelm in 1781. Molybdenum is the 54th most abundant element in the earth's crust. It has the third highest melting point of any element, exceeded only by tungsten and tantalum. Molybdenum does not occur naturally as a free metal, it is found in various oxidation states in minerals. The primary commercial source of molybdenum is molybdenite, although it is also recovered as a byproduct of copper and tungsten mining. The origin of the name Molybdenum comes from the Greek word molubdos meaning lead.

SSee more Sulfur products. Sulfur (or Sulphur) (atomic symbol: S, atomic number: 16) is a Block P, Group 16, Period 3 element with an atomic radius of 32.066. The number of electrons in each of Sulfur's shells is 2, 8, 6 and its electron configuration is [Ne] 3s2 3p4. In its elemental form, sulfur has a light yellow appearance. The sulfur atom has a covalent radius of 105 pm and a Van der Waals radius of 180 pm. In nature, sulfur can be found in hot springs, meteorites, volcanoes, and as galena, gypsum, and epsom salts. Sulfur has been known since ancient times but was not accepted as an element until 1777, when Antoine Lavoisier helped to convince the scientific community that it was an element and not a compound.

Research

Recent Research & Development for Sulfur

  • Induction and repair of DNA cross-links induced by sulfur mustard in the A-549 cell line followed by a comet assay. Jost P, Svobodova H, Stetina R. Chem Biol Interact. 2015 May 15
  • Thiol activated prodrugs of sulfur dioxide (SO2) as MRSA inhibitors. Pardeshi KA, Malwal SR, Banerjee A, Lahiri S, Rangarajan R, Chakrapani H. Bioorg Med Chem Lett. 2015 Apr 23.
  • A simple approach to the synthesis of Cu1.8S dendrites with thiamine hydrochloride as a sulfur source and structure-directing agent. Yan X, Li S, Pan YX, Yang Z, Liu X. Beilstein J Nanotechnol. 2015 Apr 1
  • Enabling Prominent High-Rate and Cycle Performances in One Lithium-Sulfur Battery: Designing Permselective Gateways for Li+ Transportation in Holey-CNT/S Cathodes. Zhou Y, Zhou C, Li Q, Yan C, Han B, Xia K, Gao Q, Wu J. Adv Mater. 2015 May 20.
  • Nanospace-Confinement Copolymerization Strategy for Encapsulating Polymeric Sulfur into Porous Carbon for Lithium-Sulfur Batteries. Ding B, Chang Z, Xu G, Nie P, Wang J, Pan J, Dou H, Zhang X. ACS Appl Mater Interfaces. 2015 May 22.
  • Hydrophilicity-controlled ordered mesoporous carbon for lithium-sulfur batteries. Bae S, Jin X, Park GO, Kim JM. J Nanosci Nanotechnol. 2014 Dec
  • Vertically Aligned Sulfur-Graphene Nanowalls on Substrates for Ultrafast Lithium-Sulfur Batteries. Li B, Li S, Liu J, Wang B, Yang S. Nano Lett. 2015 Apr 10. : Nano Lett
  • Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments. Hansel CM, Lentini CJ, Tang Y, Johnston DT, Wankel SD, Jardine PM. ISME J. 2015 Apr 14.: ISME J
  • Interaction between Nitrogen and Sulfur in Co-Doped Graphene and Synergetic Effect in Supercapacitor. Wang T, Wang LX, Wu DL, Xia W, Jia DZ. Sci Rep. 2015 Apr 16: Sci Rep
  • Protic-Salt-Derived Nitrogen/Sulfur-Codoped Mesoporous Carbon for the Oxygen Reduction Reaction and Supercapacitors. Zhang S, Ikoma A, Ueno K, Chen Z, Dokko K, Watanabe M. ChemSusChem. 2015 Apr 8.: ChemSusChem
  • Encapsulation of S/SWNT with PANI Web for Enhanced Rate and Cycle Performance in Lithium Sulfur Batteries. Kim JH, Fu K, Choi J, Kil K, Kim J, Han X, Hu L, Paik U. Sci Rep. 2015 Mar 10

Recent Research & Development for Molybdenum

  • Lignin-assisted exfoliation of molybdenum disulfide in aqueous media and its application in lithium ion batteries. Liu W, Zhao C, Zhou R, Zhou D, Liu Z, Lu X. Nanoscale. 2015 May 21
  • Interplay between Organic-Organometallic Electrophores within Bis(cyclopentadienyl)Molybdenum Dithiolene Tetrathiafulvalene Complexes. Bellec N, Vacher A, Barrière F, Xu Z, Roisnel T, Lorcy D. Inorg Chem. 2015 May 18
  • 2D Materials: The Influence of Water on the Optical Properties of Single-Layer Molybdenum Disulfide (Adv. Mater. 17/2015). Varghese JO, Agbo P, Sutherland AM, Brar VW, Rossman GR, Gray HB, Heath JR. Adv Mater. 2015 May
  • Basal-Plane Functionalization of Chemically Exfoliated Molybdenum Disulfide by Diazonium Salts. Knirsch KC, Berner NC, Nerl HC, Cucinotta CS, Gholamvand Z, McEvoy N, Wang Z, Abramovic I, Vecera P, Halik M, Sanvito S, Duesberg GS, Nicolosi V, Hauke F, Hirsch A, Coleman JN, Backes C. ACS Nano. 2015 May 20.
  • Oscillatory motion in layered materials: graphene, boron nitride, and molybdenum disulfide. Ye Z, Otero-de-la-Roza A, Johnson ER, Martini A. Nanotechnology. 2015 Apr 24: Nanotechnology
  • Towards Barrier Free Contact to Molybdenum Disulfide using Graphene Electrodes. Liu Y, Wu H, Cheng HC, Yang S, Zhu E, He Q, Ding M, Li D, Guo J, Weiss N, Huang Y, Duan X. Nano Lett. 2015 Apr 16. : Nano Lett
  • Synthesis of nanostructured clean surface molybdenum carbides on graphene sheets as efficient and stable hydrogen evolution reaction catalysts. He C, Tao J. Chem Commun (Camb). 2015 Apr 16. : Chem Commun (Camb)
  • Synthesis of Waste Cooking Oil Based Biodiesel via Ferric-Manganese Promoted Molybdenum Oxide / Zirconia Nanoparticle Solid acid Catalyst: Influence of Ferric and Manganese Dopants. Alhassan FH, Rashid U, Taufiq-Yap YH. J Oleo Sci. 2015 Apr 6. : J Oleo Sci
  • Fate and Transport of Molybdenum Disulfide Nanomaterials in Sand Columns. Lanphere JD, Luth CJ, Guiney LM, Mansukhani ND, Hersam MC, Walker SL. Environ Eng Sci. 2015 Feb 1
  • Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production. Wu HB, Xia BY, Yu L, Yu XY, Lou XW. Nat Commun. 2015 Mar 11

Recent Research & Development for Sulfides

  • Development of the Transferable Potentials for Phase Equilibria Model for Hydrogen Sulfide. Shah MS, Tsapatsis M, Siepmann JI. J Phys Chem B. 2015 May 18.
  • 8-Mercapto-Cyclic GMP Mediates Hydrogen Sulfide-Induced Stomatal Closure in Arabidopsis. Honda K, Yamada N, Yoshida R, Ihara H, Sawa T, Akaike T, Iwai S. Plant Cell Physiol. 2015 May 14.
  • Microbial diversity and the implications of sulfide levels in an anaerobic reactor used to remove an anionic surfactant from laundry wastewater. Delforno TP, Moura AG, Okada DY, Sakamoto IK, Varesche MB. Bioresour Technol. 2015 May 20
  • A tetraphenylimidazole-based fluorescent probe for the detection of hydrogen sulfide and its application in living cells. Gu B, Mi N, Zhang Y, Yin P, Li H, Yao S. Anal Chim Acta. 2015 Jun 16
  • Hydrogen Sulfide-Based Anti-Inflammatory and Chemopreventive Therapies: An Experimental Approach. Flannigan KL, Wallace JL. Curr Pharm Des. 2015 May 13.
  • Formation of Copper Zinc Tin Sulfide Thin Films from Colloidal Nanocrystal Dispersions via Aerosol-Jet Printing and Compaction. Williams BA, Mahajan A, Smeaton MA, Holgate CS, Aydil ES, Francis LF. ACS Appl Mater Interfaces. 2015 May 19.
  • A highly efficient flexible dye-sensitized solar cell based on nickel sulfide/platinum/titanium counter electrode. Yue G, Ma X, Zhang W, Li F, Wu J, Li G. Nanoscale Res Lett. 2015 Jan 10
  • Facile assembly of oppositely charged silver sulfide nanoparticles into photoluminescent mesoporous nanospheres. Tan L, Liu S, Yang Q, Shen YM. Langmuir. 2015 Mar 15.
  • Cadmium sulfide quantum dots induce oxydative-stress and behavioural impairments in the marine clam Scrobicularia plana. Buffet PE, Zalouk-Vergnoux A, Poirier L, Lopes C, Risso-de Faverney C, Guibbolini M, Gilliland D, Perrein-Ettajani H, Valsami-Jones E, Mouneyrac C. Environ Toxicol Chem. 2015 Mar 13.
  • Hexametaphosphate-Capped Silica Mesoporous Nanoparticles Containing CuII Complexes for the Selective and Sensitive Optical Detection of Hydrogen Sulfide in Water. El Sayed S, Milani M, Licchelli M, Martínez-Máñez R, Sancenón F. Chemistry. 2015 Mar 10.

Free Test Sample Program

We recognize many of our customers are purchasing small quantities directly online as trial samples in anticipation of placing a larger future order or multiple orders as a raw material for production. Since our primary business is the production of industrial quantities and/or highly consistent batches which can be used for commercial production and purchased repeatedly in smaller quantity, American Elements offers trial samples at no charge on the following basis. Within 6 months of purchasing materials directly online from us, you have the option to refer back to that order and advise that it is the intention of your company, institution or lab to either purchase a larger quantity, purchase the material in regular intervals or purchase more on some other basis.

We will then evaluate your future needs and assuming the quantity or number of future purchases qualify, we will fully credit your purchase price with the next order. Because of the many variables in the quantity and number of orders you may place, it is impossible to evaluate whether your future order(s) will qualify for this program prior to your placing your next order. Please know American Elements strongly desires to make this free sample program available to you and will make every effort to do so once your next order is placed.