Molybdenum-Tungsten Mixed Oxide Deposited into Titanium Dioxide Nanotube Arrays for Ultrahigh Rate Supercapacitors.

Title Molybdenum-Tungsten Mixed Oxide Deposited into Titanium Dioxide Nanotube Arrays for Ultrahigh Rate Supercapacitors.
Authors H. Zhou; X. Zou; K. Zhang; P. Sun; M.Suzaul Islam; J. Gong; Y. Zhang; J. Yang
Journal ACS Appl Mater Interfaces
DOI 10.1021/acsami.7b01871
Abstract

A novel method involving the fabrication of Mo-W mixed oxide (MoxW1-xO3) is proposed to modify the modest reaction kinetics and poor cycling stability of MoO3 material. By a simple coelectrodeposition method, a series of MoxW1-xO3 oxides is deposited on a TiO2 nanotube array substrate. Because of the differences between Mo(6+) and W(6+) in nature, there is significant distortion existing in the mixed oxides, leading to their decreased crystallite size and enlarged lattice space, which facilitates ion diffusion in the solid. As results, the mixed oxides show much better balance between specific capacitance and cycling stability than the bare MoO3 or WO3 sample, which suffers from either poor cycling stability or low electrochemical activity. Impressively, the optimal Mo-W mixed oxide exhibits a high specific capacitance of 517.4 F g(-1) at 1 A g(-1), and, moreover, it retains 89.3% of the capacitance even at a high current density of 10 A g(-1), demonstrating ultrahigh rate capability. These findings reveal the potential of the Mo-W mixed oxide for constructing advanced ultrahigh power supercapacitors.

Citation H. Zhou; X. Zou; K. Zhang; P. Sun; M.Suzaul Islam; J. Gong; Y. Zhang; J. Yang.Molybdenum-Tungsten Mixed Oxide Deposited into Titanium Dioxide Nanotube Arrays for Ultrahigh Rate Supercapacitors.. ACS Appl Mater Interfaces. 2017. doi:10.1021/acsami.7b01871

Related Elements

Molybdenum

See more Molybdenum products. Molybdenum (atomic symbol: Mo, atomic number: 42) is a Block D, Group 6, Period 5 element with an atomic weight of 95.96. Molybdenum Bohr ModelThe number of electrons in each of molybdenum's shells is [2, 8, 18, 13, 1] and its electron configuration is [Kr] 4d5 5s1. The molybdenum atom has a radius of 139 pm and a Van der Waals radius of 209 pm. In its elemental form, molybdenum has a gray metallic appearance. Molybdenum was discovered by Carl Wilhelm in 1778 and first isolated by Peter Jacob Hjelm in 1781. Molybdenum is the 54th most abundant element in the earth's crust. Elemental MolybdenumIt has the third highest melting point of any element, exceeded only by tungsten and tantalum. Molybdenum does not occur naturally as a free metal, it is found in various oxidation states in minerals. The primary commercial source of molybdenum is molybdenite, although it is also recovered as a byproduct of copper and tungsten mining. The origin of the name Molybdenum comes from the Greek word molubdos meaning lead.

Titanium

See more Titanium products. Titanium (atomic symbol: Ti, atomic number: 22) is a Block D, Group 4, Period 4 element with an atomic weight of 47.867. The number of electrons in each of Titanium's shells is [2, 8, 10, 2] and its electron configuration is [Ar] 3d2 4s2. Titanium Bohr ModelThe titanium atom has a radius of 147 pm and a Van der Waals radius of 187 pm. Titanium was discovered by William Gregor in 1791 and first isolated by Jöns Jakob Berzelius in 1825. In its elemental form, titanium has a silvery grey-white metallic appearance. Titanium's properties are chemically and physically similar to zirconium, both of which have the same number of valence electrons and are in the same group in the periodic table. Elemental TitaniumTitanium has five naturally occurring isotopes: 46Ti through 50Ti, with 48Ti being the most abundant (73.8%). Titanium is found in igneous rocks and the sediments derived from them. It is named after the word Titanos, which is Greek for Titans.

Tungsten

See more Tungsten products. Tungsten (atomic symbol: W, atomic number: 74) is a Block D, Group 6, Period 6 element with an atomic weight of 183.84. The number of electrons in each of tungsten's shells is [2, 8, 18, 32, 12, 2] and its electron configuration is [Xe] 4f14 5d4 6s2. Tungsten Bohr ModelThe tungsten atom has a radius of 139 pm and a Van der Waals radius of 210 pm. Tungsten was discovered by Torbern Bergman in 1781 and first isolated by Juan José Elhuyar and Fausto Elhuyar in 1783. In its elemental form, tungsten has a grayish white, lustrous appearance. Elemental TungstenTungsten has the highest melting point of all the metallic elements and a density comparable to that or uranium or gold and about 1.7 times that of lead. Tungsten alloys are often used to make filaments and targets of x-ray tubes. It is found in the minerals scheelite (CaWO4) and wolframite [(Fe,Mn)WO4]. In reference to its density, Tungsten gets its name from the Swedish words tung and sten, meaning heavy stone.

Related Forms & Applications