Prognostic Value of Myocardial Perfusion Imaging with a Cadmium-Zinc-Telluride SPECT Camera in Patients Suspected of Having Coronary Artery Disease.

Title Prognostic Value of Myocardial Perfusion Imaging with a Cadmium-Zinc-Telluride SPECT Camera in Patients Suspected of Having Coronary Artery Disease.
Authors E.M. Engbers; J.R. Timmer; M. Mouden; S. Knollema; P.L. Jager; J.Paul Ottervanger
Journal J Nucl Med
DOI 10.2967/jnumed.116.188516
Abstract

The prognostic value of myocardial perfusion imaging (MPI) with the cadmium-zinc-telluride (CZT) SPECT camera is not well established. Therefore, the aim of the current study was to evaluate the prognostic value of MPI performed with a CZT SPECT camera in a large cohort of patients suspected of having coronary artery disease. Methods: Consecutive symptomatic stable patients (n = 4,057) without a history of coronary artery disease underwent CZT SPECT MPI. During a median follow-up of 2.4 y (25th-75th percentile, 1.7-3.4), patients were monitored for primary (nonfatal myocardial infarction and cardiac mortality) and secondary outcomes (late revascularization [>90 d after scanning] and primary outcome). Results: Patients with normal perfusion demonstrated low annual event rates (primary outcome, 0.2%; secondary outcome, 0.6%). Annual event rates increased with the extent of abnormality of myocardial perfusion. In patients with small ischemic perfusion defects, annual event rates were 0.7% and 2.8% for the primary and secondary outcome, respectively. In patients with moderate or large ischemic perfusion defects, these event rates were 1.2% and 4.3%, respectively. After multivariate analysis, the risk for events was significantly associated with the extent of ischemia (hazard ratio for small ischemic defects: 2.2, 95% confidence interval [CI], 0.9-5.9 and 4.6, 95% CI, 2.8-7.6, for primary and secondary outcomes, respectively; hazard ratio for moderate or large ischemic defects: 4.0, 95% CI, 1.5-10.5 and 12.1, 95% CI, 7.2-20.2, for primary and secondary outcomes, respectively). Conclusion: Our findings show that MPI acquired with a CZT SPECT camera provides excellent prognostic information, with low event rates in patients with normal myocardial perfusion. In patients with abnormal SPECT MPI, the extent of abnormality is independently associated with an increased risk of events.

Citation E.M. Engbers; J.R. Timmer; M. Mouden; S. Knollema; P.L. Jager; J.Paul Ottervanger.Prognostic Value of Myocardial Perfusion Imaging with a Cadmium-Zinc-Telluride SPECT Camera in Patients Suspected of Having Coronary Artery Disease.. J Nucl Med. 2017;58(9):14591463. doi:10.2967/jnumed.116.188516

Related Elements

Cadmium

See more Cadmium products. Cadmium (atomic symbol: Cd, atomic number: 48) is a Block D, Group 12, Period 5 element with an atomic weight of 112.411. Cadmium Bohr ModelThe number of electrons in each of Cadmium's shells is 2, 8, 18, 18, 2 and its electron configuration is [Kr]4d10 5s2. The cadmium atom has a radius of 151 pm and a Van der Waals radius of 230 pm. Cadmium was discovered and first isolated by Karl Samuel Leberecht Hermann and Friedrich Stromeyer in 1817. In its elemental form, cadmium has a silvery bluish gray metallic appearance. Cadmium makes up about 0.1 ppm of the earth's crust. Elemental CadmiumNo significant deposits of cadmium containing ores are known, however, it is sometimes found in its metallic form. It is a common impurity in zinc ores and is isolated during the production of zinc. Cadmium is a key component in battery production and particular pigments and coatings due to its distinct yellow color. Cadmium oxide is used in phosphors for television picture tubes. The name Cadmium originates from the Latin word 'cadmia' and the Greek word 'kadmeia'.

Tellurium

See more Tellurium products. Tellurium (atomic symbol: Te, atomic number: 52) is a Block P, Group 16, Period 5 element with an atomic radius of 127.60. Tellurium Bohr ModelThe number of electrons in each of tellurium's shells is 2, 8, 18, 18, 6 and its electron configuration is [Kr] 4d10 5s2 5p4. Tellurium was discovered by Franz Muller von Reichenstein in 1782 and first isolated by Martin Heinrich Klaproth in 1798. In its elemental form, tellurium has a silvery lustrous gray appearance. The tellurium atom has a radius of 140 pm and a Van der Waals radius of 206 pm. Elemental TelluriumTellurium is most commonly sourced from the anode sludges produced as a byproduct of copper refining. The name Tellurium originates from the Greek word Tellus, meaning Earth.

Zinc

See more Zinc products. Zinc (atomic symbol: Zn, atomic number: 30) is a Block D, Group 12, Period 4 element with an atomic weight of 65.38. The number of electrons in each of zinc's shells is 2, 8, 18, 2, and its electron configuration is [Ar] 3d10 4s2. Zinc Bohr ModelThe zinc atom has a radius of 134 pm and a Van der Waals radius of 210 pm. Zinc was discovered by Indian metallurgists prior to 1000 BC and first recognized as a unique element by Rasaratna Samuccaya in 800. Zinc was first isolated by Andreas Marggraf in 1746. In its elemental form, zinc has a silver-gray appearance. It is brittle at ordinary temperatures but malleable at 100 °C to 150 °C.Elemental Zinc It is a fair conductor of electricity, and burns in air at high red producing white clouds of the oxide. Zinc is mined from sulfidic ore deposits. It is the 24th most abundant element in the earth's crust and the fourth most common metal in use (after iron, aluminum, and copper). The name zinc originates from the German word "zin," meaning tin.

Related Forms & Applications