Structure and analysis of nucleoside diphosphate kinase from Borrelia burgdorferi prepared in a transition-state complex with ADP and vanadate moieties.

Title Structure and analysis of nucleoside diphosphate kinase from Borrelia burgdorferi prepared in a transition-state complex with ADP and vanadate moieties.
Authors M. Dumais; D.R. Davies; T. Lin; B.L. Staker; P.J. Myler; W.C. Van Voorhis
Journal Acta Crystallogr F Struct Biol Commun
DOI 10.1107/S2053230X18007392
Abstract

Nucleoside diphosphate kinases (NDKs) are implicated in a wide variety of cellular functions owing to their enzymatic conversion of NDP to NTP. NDK from Borrelia burgdorferi (BbNDK) was selected for functional and structural analysis to determine whether its activity is required for infection and to assess its potential for therapeutic inhibition. The Seattle Structural Genomics Center for Infectious Diseases (SSGCID) expressed recombinant BbNDK protein. The protein was crystallized and structures were solved of both the apoenzyme and a liganded form with ADP and vanadate ligands. This provided two structures and allowed the elucidation of changes between the apo and ligand-bound enzymes. Infectivity studies with ndk transposon mutants demonstrated that NDK function was important for establishing a robust infection in mice, and provided a rationale for therapeutic targeting of BbNDK. The protein structure was compared with other NDK structures found in the Protein Data Bank and was found to have similar primary, secondary, tertiary and quaternary structures, with conserved residues acting as the catalytic pocket, primarily using His132 as the phosphohistidine-transfer residue. Vanadate and ADP complexes model the transition state of this phosphoryl-transfer reaction, demonstrating that the pocket closes when bound to ADP, while allowing the addition or removal of a ?-phosphate. This analysis provides a framework for the design of potential therapeutics targeting BbNDK inhibition.

Citation M. Dumais; D.R. Davies; T. Lin; B.L. Staker; P.J. Myler; W.C. Van Voorhis.Structure and analysis of nucleoside diphosphate kinase from Borrelia burgdorferi prepared in a transition-state complex with ADP and vanadate moieties.. Acta Crystallogr F Struct Biol Commun. 2018;74(Pt 6):373384. doi:10.1107/S2053230X18007392

Related Elements

Vanadium

See more Vanadium products. Vanadium (atomic symbol: V, atomic number: 23) is a Block D, Group 5, Period 4 element with an atomic weight of 50.9415. Vanadium Bohr ModelThe number of electrons in each of Vanadium's shells is 2, 8, 11, 2 and its electron configuration is [Ar] 3d3 4s2. The vanadium atom has a radius of 134 pm and a Van der Waals radius of 179 pm. Vanadium was discovered by Andres Manuel del Rio in 1801 and first isolated by Nils Gabriel Sefström in 1830. In its elemental form, vanadium has a bluish-silver appearance. Elemental VanadiumIt is a hard, ductile transition metal that is primarily used as a steel additive and in alloys such as Titanium-6AL-4V, which is composed of titanium, aluminum, and vanadium and is the most common titanium alloy commercially produced. Vanadium is found in fossil fuel deposits and 65 different minerals. Vanadium is not found free in nature; however, once isolated it forms an oxide layer that stabilizes the free metal against further oxidation. Vanadium was named after the word "Vanadis" meaning goddess of beauty in Scandinavian mythology.

Phosphorus

Phosphorus Bohr ModelSee more Phosphorus products. Phosphorus (atomic symbol: P, atomic number: 15) is a Block P, Group 15, Period 3 element. The number of electrons in each of Phosphorus's shells is 2, 8, 5 and its electronic configuration is [Ne] 3s2 3p3. The phosphorus atom has a radius of 110.5.pm and its Van der Waals radius is 180.pm. Phosphorus is a highly-reactive non-metallic element (sometimes considered a metalloid) with two primary allotropes, white phosphorus and red phosphorus its black flaky appearance is similar to graphitic carbon. Compound forms of phosphorus include phosphates and phosphides. Phosphorous was first recognized as an element by Hennig Brand in 1669 its name (phosphorus mirabilis, or "bearer of light") was inspired from the brilliant glow emitted by its distillation.

Related Forms & Applications