Three Unique Barium Manganese Vanadates from High-Temperature Hydrothermal Brines.

Title Three Unique Barium Manganese Vanadates from High-Temperature Hydrothermal Brines.
Authors T.M.Smith Pellizzeri; C.D. McMillen; Y. Wen; G. Chumanov; J.W. Kolis
Journal Inorg Chem
DOI 10.1021/acs.inorgchem.7b00229
Abstract

Three new barium manganese vanadates, all containing hexagonal barium chloride layers interpenetrated by [V2O7](4-) groups, were synthesized using a high-temperature (580 °C) hydrothermal method. Two of the compounds were prepared from a mixed BaCl2/Ba(OH)2 mineralizer, and the third compound was prepared from BaCl2 mineralizer. An interesting structural similarity exists between two of the compounds, Ba2Mn(V2O7)(OH)Cl and Ba4Mn2(V2O7)(VO4)2O(OH)Cl. These two compounds crystallize in the orthorhombic space group Pnma, Z = 4, and are structurally related by a nearly doubled a axis. The first structure, Ba2Mn(V2O7)(OH)Cl (I) (a = 15.097(3) Å, b = 6.1087(12) Å, c = 9.5599(19) Å), consists of octahedral manganese(II) edge-sharing chains linked by pyrovanadate [V2O7] groups, generating a three-dimensional structure. Compound II, Ba4Mn2(V2O7)(VO4)2O(OH)Cl (a = 29.0814(11) Å, b = 6.2089(2) Å, c = 9.5219(4) Å), is composed of manganese(III) edge-sharing chains that are coordinated to one another through pyrovanadate groups in a nearly identical way as in I, forming a zigzag layer. A key difference in II is that these layers are capped on either end by two monomeric [VO4] groups that directly replace one [V2O7] group in I. The third compound, Ba5Mn3(V2O7)3(OH,Cl)Cl3 (III), crystallizes in the trigonal space group R32 (a = 9.7757(4) Å, c = 22.4987(10) Å) and is composed of manganese(II) trimeric units, [Mn3O12(OH,Cl)], coordinated to one another through pyrovanadate [V2O7] groups to form a three-dimensional structure. The unusual manganese trimers are built of three square pyramids all linked by a central (OH/Cl) atom. The key factor directing the formation of the different structures appears to be the identity and concentration of the halide brine mineralizer fluid. The ability of such brines to induce the formation of interpenetrated salt lattices in the present study is suggestive of a versatile realm of descriptive synthetic inorganic chemistry.

Citation T.M.Smith Pellizzeri; C.D. McMillen; Y. Wen; G. Chumanov; J.W. Kolis.Three Unique Barium Manganese Vanadates from High-Temperature Hydrothermal Brines.. Inorg Chem. 2017;56(7):42064216. doi:10.1021/acs.inorgchem.7b00229

Related Elements

Barium

See more Barium products. Barium (atomic symbol: Ba, atomic number: 56) is a Block S, Group 2, Period 6 element with an atomic weight of 137.27. The number of electrons in each of barium's shells is [2, 8, 18, 18, 8, 2] and its electron configuration is [Xe] 6s2. Barium Bohr ModelBarium is a member of the alkaline-earth metals. The barium atom has a radius of 222 pm and a Van der Waals radius of 268 pm. Barium was discovered by Carl Wilhelm Scheele in 1772 and first isolated by Humphry Davy in 1808. Elemental BariumIn its elemental form, barium is a soft, silvery-gray metal. Industrial applications for barium include acting as a "getter," or unwanted gas remover, for vacuum tubes, and as an additive to steel and cast iron. Barium is also alloyed with silicon and aluminum in load-bearing alloys. The main commercial source of barium is the mineral barite (BaSO4); it does not occur naturally as a free element . The name barium is derived from the Greek word "barys," meaning heavy.

Manganese

See more Manganese products. Manganese (atomic symbol: Mn, atomic number: 25) is a Block D, Group 7, Period 4 element with an atomic weight of 54.938045. Manganese Bohr ModelThe number of electrons in each of Manganese's shells is [2, 8, 13, 2] and its electron configuration is [Ar] 3d5 4s2. The manganese atom has a radius of 127 pm and a Van der Waals radius of 197 pm. Manganese was first discovered by Torbern Olof Bergman in 1770 and first isolated by Johann Gottlieb Gahn in 1774. In its elemental form, manganese has a silvery metallic appearance. Elemental ManganeseIt is a paramagnetic metal that oxidizes easily in addition to being very hard and brittle. Manganese is found as a free element in nature and also in the minerals pyrolusite, braunite, psilomelane, and rhodochrosite. The name Manganese originates from the Latin word mangnes, meaning "magnet."

Vanadium

See more Vanadium products. Vanadium (atomic symbol: V, atomic number: 23) is a Block D, Group 5, Period 4 element with an atomic weight of 50.9415. Vanadium Bohr ModelThe number of electrons in each of Vanadium's shells is 2, 8, 11, 2 and its electron configuration is [Ar] 3d3 4s2. The vanadium atom has a radius of 134 pm and a Van der Waals radius of 179 pm. Vanadium was discovered by Andres Manuel del Rio in 1801 and first isolated by Nils Gabriel Sefström in 1830. In its elemental form, vanadium has a bluish-silver appearance. Elemental VanadiumIt is a hard, ductile transition metal that is primarily used as a steel additive and in alloys such as Titanium-6AL-4V, which is composed of titanium, aluminum, and vanadium and is the most common titanium alloy commercially produced. Vanadium is found in fossil fuel deposits and 65 different minerals. Vanadium is not found free in nature; however, once isolated it forms an oxide layer that stabilizes the free metal against further oxidation. Vanadium was named after the word "Vanadis" meaning goddess of beauty in Scandinavian mythology.

Related Forms & Applications