Cobalt Niobium Titanium Metal

High Purity CoNbTi Metal


Product Product Code Order or Specifications
(2N) 99% Cobalt Niobium Titanium Metal CONBTI-M-02 Contact American Elements
(3N) 99.9% Cobalt Niobium Titanium Metal CONBTI-M-03 Contact American Elements
(4N) 99.99% Cobalt Niobium Titanium Metal CONBTI-M-04 Contact American Elements
(5N) 99.999% Cobalt Niobium Titanium Metal CONBTI-M-05 Contact American Elements

Ultra High Purity Ingot of Cobalt Niobium Titanium MetalCobalt Niobium Titanium Metal is available as disc, granules, Ingot, pellets, powder, rod, wire, foil, and sputtering target. See research below. Ultra high purity and high purity forms also include metal powder, submicron powder and nanoscale, quantum dots, targets for thin film deposition, pellets for evaporation and single crystal or polycrystalline forms. Elements can also be introduced into alloys or other systems as compounds such as fluorides, oxides or chlorides or as solutions. Cobalt Niobium Titanium Metal is generally immediately available in most volumes. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Cobalt(Co) atomic and molecular weight, atomic number and elemental symbolCobalt (atomic symbol: Co, atomic number: 27) is a Block D, Group 9, Period 4 element with an atomic weight of 58.933195.Cobalt Bohr Model The number of electrons in each of cobalt's shells is 2, 8, 15, 2 and its electron configuration is [Ar] 3d7 4s2The cobalt atom has a radius of 125 pm and a Van der Waals radius of 192 pm. Cobalt was first discovered by George Brandt in 1732. In its elemental form, cobalt has a lustrous gray appearance. Cobalt is found in cobaltite, erythrite, glaucodot and skutterudite ores. Elemental Cobalt Cobalt produces brilliant blue pigments which have been used since ancient times to color paint and glass. Cobalt is a ferromagnetic metal and is used primarily in the production of magnetic and high-strength superalloys. Co-60, a commercially important radioisotope, is useful as a radioactive tracer and gamma ray source. The origin of the word Cobalt comes from the German word "Kobalt" or "Kobold," which translates as "goblin," "elf" or "evil spirit." For more information on cobalt, including properties, safety data, research, and American Elements' catalog of cobalt products, visit the Cobalt Information Center.

Niobium(Nb) atomic and molecular weight, atomic number and elemental symbolNiobium (atomic symbol: Nb, atomic number: 41) is a Block D, Group 5, Period 5 element with an atomic weight of 92.90638. Niobium Bohr ModelThe number of electrons in each of niobium's shells is 2, 8, 18, 12, 1 and its electron configuration is [Kr] 4d4 5s1. The niobium atom has a radius of 146 pm and a Van der Waals radius of 207 pm. Niobium was discovered by Charles Hatchett in 1801 and first isolated by Christian Wilhelm Blomstrand in 1864. Elemental NiobiumIn its elemental form, niobium has a gray metallic appearance. Niobium has the largest magnetic penetration depth of any element and is one of three elemental type-II superconductors (along with vanadium and technetium). Niobium is found in the minerals pyrochlore, its main commercial source, and columbite. The word Niobium originates from Niobe, daughter of mythical Greek king Tantalus. For more information on niobium, including properties, safety data, research, and American Elements' catalog of niobium products, visit the Niobium Information Center.

Titanium (Ti) atomic and molecular weight, atomic number and elemental symbolTitanium (atomic symbol: Ti, atomic number: 22) is a Block D, Group 4, Period 4 element with an atomic weight of 47.867. The number of electrons in each of Titanium's shells is [2, 8, 10, 2] and its electron configuration is [Ar] 3d2 4s2. Titanium Bohr ModelThe titanium atom has a radius of 147 pm and a Van der Waals radius of 187 pm. Titanium was discovered by William Gregor in 1791 and first isolated by Jöns Jakob Berzelius in 1825. n its elemental form, titanium has a silvery grey-white metallic appearance. Titanium's properties are chemically and physically similar to zirconium, both of which have the same number of valence electrons and are in the same group in the periodic table.Elemental Titanium Titanium has five naturally occurring isotopes: 46Ti through 50Ti, with 48Ti being the most abundant (73.8%). Titanium is found in igneous rocks and the sediments derived from them. It is named after the word Titanos, which is Greek for Titans. For more information on titanium, including properties, safety data, research, and American Elements' catalog of titanium products, visit the Titanium Information Center.


CUSTOMERS FOR COBALT NIOBIUM TITANIUM METAL HAVE ALSO LOOKED AT
Show Me MORE Forms of Cobalt

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Cobalt

  • Changbai Liu, Xiao Chi, Xingyi Liu, Shenglei Wang, Comparison of ethanol sensitivity based on cobalt–indium combined oxide nanotubes and nanofibers, Journal of Alloys and Compounds, Volume 616, 15 December 2014
  • E.M.S. Barbieri, E.P.C. Lima, M.F.F. Lelis, M.B.J.G. Freitas, Recycling of cobalt from spent Li-ion batteries as ß-Co(OH)2 and the application of Co3O4 as a pseudocapacitor, Journal of Power Sources, Volume 270, 15 December 2014
  • Baiju Vidyadharan, Radhiyah Abd Aziz, Izan Izwan Misnon, Gopinathan M. Anil Kumar, Jamil Ismail, Mashitah M. Yusoff, Rajan Jose, High energy and power density asymmetric supercapacitors using electrospun cobalt oxide nanowire anode, Journal of Power Sources, Volume 270, 15 December 2014
  • Chien-Te Hsieh, Yu-Fu Chen, Chun-Ting Pai, Chung-Yu Mo, Synthesis of lithium nickel cobalt manganese oxide cathode materials by infrared induction heating, Journal of Power Sources, Volume 269, 10 December 2014
  • John Wang, Justin Purewal, Ping Liu, Jocelyn Hicks-Garner, Souren Soukazian, Elena Sherman, Adam Sorenson, Luan Vu, Harshad Tataria, Mark W. Verbrugge, Degradation of lithium ion batteries employing graphite negatives and nickel–cobalt–manganese oxide + spinel manganese oxide positives: Part 1, aging mechanisms and life estimation, Journal of Power Sources, Volume 269, 10 December 2014
  • E.M.S. Barbieri, E.P.C. Lima, S.J. Cantarino, M.F.F. Lelis, M.B.J.G. Freitas, Recycling of spent ion-lithium batteries as cobalt hydroxide, and cobalt oxide films formed under a conductive glass substrate, and their electrochemical properties, Journal of Power Sources, Volume 269, 10 December 2014
  • Guiqiang Wang, Juan Zhang, Shuai Kuang, Shaomin Liu, Shuping Zhuo, The production of cobalt sulfide/graphene composite for use as a low-cost counter-electrode material in dye-sensitized solar cells, Journal of Power Sources, Volume 269, 10 December 2014
  • Mohamed Bakr Mohamed, M. Yehia, Cation distribution and magnetic properties of nanocrystalline gallium substituted cobalt ferrite, Journal of Alloys and Compounds, Volume 615, 5 December 2014
  • R.K. Panda, R. Muduli, S.K. Kar, D. Behera, Dielectric relaxation and conduction mechanism of cobalt ferrite nanoparticles, Journal of Alloys and Compounds, Volume 615, 5 December 2014
  • J.J. Ruan, C.P. Wang, S.Y. Yang, R. Kainuma, X.J. Liu, New cobalt-based intermetallic compound Co2VMn with B2 structure and phase equilibria in the Co–V–Mn ternary system, Journal of Alloys and Compounds, Volume 615, 5 December 2014
  • Hui Fan, Michael Keane, Prabhakar Singh, Minfang Han, Electrochemical performance and stability of lanthanum strontium cobalt ferrite oxygen electrode with gadolinia doped ceria barrier layer for reversible solid oxide fuel cell, Journal of Power Sources, Volume 268, 5 December 2014
  • Panpan Xu, Ke Ye, Dianxue Cao, Jichun Huang, Tong Liu, Kui Cheng, Jinling Yin, Guiling Wang, Facile synthesis of cobalt manganese oxides nanowires on nickel foam with superior electrochemical performance, Journal of Power Sources, Volume 268, 5 December 2014
  • Hee-Je Kim, Su-Weon Kim, Chandu V.V.M. Gopi, Soo-Kyoung Kim, S. Srinivasa Rao, Myeong-Soo Jeong, Improved performance of quantum dot-sensitized solar cells adopting a highly efficient cobalt sulfide/nickel sulfide composite thin film counter electrode, Journal of Power Sources, Volume 268, 5 December 2014
  • Xuefei Gong, J.P. Cheng, Fu Liu, Li Zhang, Xiaobin Zhang, Nickel–Cobalt hydroxide microspheres electrodepositioned on nickel cobaltite nanowires grown on Ni foam for high-performance pseudocapacitors, Journal of Power Sources, Volume 267, 1 December 2014
  • Pouyan Paknahad, Masoud Askari, Milad Ghorbanzadeh, Application of sol–gel technique to synthesis of copper–cobalt spinel on the ferritic stainless steel used for solid oxide fuel cell interconnects, Journal of Power Sources, Volume 266, 15 November 2014
  • Alexander Schenk, Christoph Grimmer, Markus Perchthaler, Stephan Weinberger, Birgit Pichler, Christoph Heinzl, Christina Scheu, Franz-Andreas Mautner, Brigitte Bitschnau, Viktor Hacker, Platinum–cobalt catalysts for the oxygen reduction reaction in high temperature proton exchange membrane fuel cells – Long term behavior under ex-situ and in-situ conditions, Journal of Power Sources, Volume 266, 15 November 2014
  • Yaoming Xiao, Wei-Yan Wang, Shu-Wei Chou, Tsung-Wu Lin, Jeng-Yu Lin, In situ electropolymerization of polyaniline/cobalt sulfide decorated carbon nanotube composite catalyst toward triiodide reduction in dye-sensitized solar cells, Journal of Power Sources, Volume 266, 15 November 2014
  • Robert Iano?, Highly sinterable cobalt ferrite particles prepared by a modified solution combustion synthesis, Materials Letters, Volume 135, 15 November 2014
  • Songying Liu, Ling Zhou, Liyuan Yao, Liya Chai, Li Li, Guo Zhang, Kankan, Keying Shi, One-pot reflux method synthesis of cobalt hydroxide nanoflake-reduced graphene oxide hybrid and their NOx gas sensors at room temperature, Journal of Alloys and Compounds, Volume 612, 5 November 2014
  • M.B. Lourenço, M.D. Carvalho, P. Fonseca, T. Gasche, G. Evans, M. Godinho, M.M. Cruz, Stability and magnetic properties of cobalt nitrides, Journal of Alloys and Compounds, Volume 612, 5 November 2014

Recent Research & Development for Niobium

  • P. Tsakiropoulos, On the macrosegregation of silicon in niobium silicide based alloys, Intermetallics, Volume 55, December 2014
  • Sofya B. Artemkina, Tatyana Yu Podlipskaya, Alexander I. Bulavchenko, Alexander I. Komonov, Yuri V. Mironov, Vladimir E. Fedorov, Preparation and characterization of colloidal dispersions of layered niobium chalcogenides, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 461, 5 November 2014
  • P. Mastanaiah, G. Madhusudhan Reddy, K. Satya Prasad, C.V.S. Murthy, An investigation on microstructures and mechanical properties of explosive cladded C103 niobium alloy over C263 nimonic alloy, Journal of Materials Processing Technology, Volume 214, Issue 11, November 2014
  • R.L. Grosso, R. Muccillo, E.N.S. Muccillo, Stabilization of the cubic phase in zirconia–scandia by niobium oxide addition, Materials Letters, Volume 134, 1 November 2014
  • Juan-Li Gao, Shuang Gao, Chun-Ling Liu, Zhao-Tie Liu, Wen-Sheng Dong, Synthesis, characterization, and catalytic application of ordered mesoporous carbon–niobium oxide composites, Materials Research Bulletin, Volume 59, November 2014
  • Aihua Yan, Changsheng Xie, Fei Huang, Shunping Zhang, Shaoliang Zhang, An efficient method to modulate the structure, morphology and properties of WO3 through niobium doping, Journal of Alloys and Compounds, Volume 610, 15 October 2014
  • Zhong-Li Liu, Ling-Cang Cai, Xiu-Lu Zhang, Novel high pressure structures and superconductivity of niobium disulfide, Journal of Alloys and Compounds, Volume 610, 15 October 2014
  • O. Toma, S. Georgescu, Excited-state absorption in erbium-doped calcium lithium niobium gallium garnet, Journal of Luminescence, Volume 154, October 2014
  • L. Ghussn, R.M.C.V. Reis, R.K. Brow, D.B. Baker, Color bleaching and oxygen diffusion in a niobium phosphate glass, Journal of Non-Crystalline Solids, Volume 401, 1 October 2014
  • Agnieszka Gubernat, Lukasz Zych, The isothermal sintering of the single-phase non-stoichiometric niobium carbide (NbC1-x) and tantalum carbide (TaC1-x), Journal of the European Ceramic Society, Volume 34, Issue 12, October 2014
  • Bo-Wen Huang, Jia-Xiang Shang, Zeng-Hui Liu, Yue Chen, Atomic simulation of bcc niobium 5 grain boundary under shear deformation, Acta Materialia, Volume 77, 15 September 2014
  • F.E. Castillejo, D.M. Marulanda, J.J. Olaya, J.E. Alfonso, Wear and corrosion resistance of niobium–chromium carbide coatings on AISI D2 produced through TRD, Surface and Coatings Technology, Volume 254, 15 September 2014
  • Li Ming, Qingfeng Wang, Huibin Wang, Chuanyou Zhang, Zhang Wei, Aimin Guo, A remarkable role of niobium precipitation in refining microstructure and improving toughness of A QT-treated 20CrMo47NbV steel with ultrahigh strength, Materials Science and Engineering: A, Volume 613, 8 September 2014
  • Chenning Zhang, Tetsuo Uchikoshi, Ji-Guang Li, Takayuki Watanabe, Takamasa Ishigaki, Photocatalytic activities of europium (III) and niobium (V) co-doped TiO2 nanopowders synthesized in Ar/O2 radio-frequency thermal plasmas, Journal of Alloys and Compounds, Volume 606, 5 September 2014
  • Lingxia Li, Dan Xu, Shihui Yu, Helei Dong, Yuxin Jin, Effect of thickness on the dielectric properties of bismuth magnesium niobium thin films deposited by rf magnetron sputtering, Ceramics International, Volume 40, Issue 8, Part A, September 2014
  • Maciej Sowa, Katarzyna Gren, Andrey I. Kukharenko, Danila M. Korotin, Joanna Michalska, Lilianna Szyk-Warszynska, Michal Mosialek, Jerzy Zak, Elzbieta Pamula, Ernst Z. Kurmaev, Seif O. Cholakh, Wojciech Simka, Influence of electropolishing and anodic oxidation on morphology, chemical composition and corrosion resistance of niobium, Materials Science and Engineering: C, Volume 42, 1 September 2014
  • L. Portebois, S. Mathieu, Y. Bouizi, M. Vilasi, S. Mathieu, Effect of boron addition on the oxidation resistance of silicide protective coatings: A focus on boron location in as-coated and oxidised coated niobium alloys, Surface and Coatings Technology, Volume 253, 25 August 2014
  • Lixia Wang, Bin Kang, Juncai Sun, Yuanyuan Li, Linan Jia, Niobium diffusion modified austenitic stainless steel bipolar plate for direct methanol fuel cell, International Journal of Hydrogen Energy, Volume 39, Issue 25, 22 August 2014
  • Zhongfei Ye, Pei Wang, Dianzhong Li, Yutuo Zhang, Yiyi Li, Effect of carbon and niobium on the microstructure and impact toughness of a High silicon 12%Cr Ferritic/Martensitic heat resistant steel, Materials Science and Engineering: A, Available online 8 August 2014
  • J. Suresh Kumar, K. Pavani, M.P.F. Graça, M.J. Soares, Enhanced green upconversion by controlled ceramization of Er3+–Yb3+ co-doped sodium niobium tellurite glass–ceramics for low temperature sensors, Journal of Alloys and Compounds, Available online 4 August 2014

Recent Research & Development for Titanium

  • Giable George, The structural and optical studies of titanium doped rare earth pigments and coloring applications, Dyes and Pigments, Volume 112, January 2015
  • Li Zhang, Yu-ping Feng, Qing Nan, Rong-xian Ke, Qing-lei Wan, Zhe Wang, Effects of titanium-based raw materials on electrochemical behavior of Ti(C,N)-based cermets, International Journal of Refractory Metals and Hard Materials, Volume 48, January 2015
  • G.J. Li, J. Li, X. Luo, Effects of post-heat treatment on microstructure and properties of laser cladded composite coatings on titanium alloy substrate, Optics & Laser Technology, Volume 65, January 2015
  • Xiaoxin Ye, Xiaopei Li, Guolin Song, Guoyi Tang, Effect of recovering damage and improving microstructure in the titanium alloy strip under high-energy electropulses, Journal of Alloys and Compounds, Volume 616, 15 December 2014
  • Wei-Sheng Liu, Shen-Yu Wu, Chao-Yu Hung, Ching-Hsuan Tseng, Yu-Lin Chang, Improving the optoelectronic properties of gallium ZnO transparent conductive thin films through titanium doping, Journal of Alloys and Compounds, Volume 616, 15 December 2014
  • Yanyan Zhu, Xiangjun Tian, Jia Li, Huaming Wang, Microstructure evolution and layer bands of laser melting deposition Ti–6.5Al–3.5Mo–1.5Zr–0.3Si titanium alloy, Journal of Alloys and Compounds, Volume 616, 15 December 2014
  • Guangyu Zhao, Yanning Niu, Li Zhang, Kening Sun, Ruthenium oxide modified titanium dioxide nanotube arrays as carbon and binder free lithium–air battery cathode catalyst, Journal of Power Sources, Volume 270, 15 December 2014
  • Zichao Yan, Li Liu, Jinli Tan, Qian Zhou, Zhifeng Huang, Dongdong Xia, Hongbo Shu, Xiukang Yang, Xianyou Wang, One-pot synthesis of bicrystalline titanium dioxide spheres with a core–shell structure as anode materials for lithium and sodium ion batteries, Journal of Power Sources, Volume 269, 10 December 2014
  • Kun-Mu Lee, Ling-Chuan Lin, Vembu Suryanarayanan, Chun-Guey Wu, Titanium dioxide coated on titanium/stainless steel foil as photoanode for high efficiency flexible dye-sensitized solar cells, Journal of Power Sources, Volume 269, 10 December 2014
  • Xiaodong Li, Zemin Zhang, Lulu Chen, Zhongping Liu, Jianli Cheng, Wei Ni, Erqing Xie, Bin Wang, Cadmium sulfide quantum dots sensitized tin dioxide–titanium dioxide heterojunction for efficient photoelectrochemical hydrogen production, Journal of Power Sources, Volume 269, 10 December 2014
  • J.S. Luo, K. Li, X.B. Li, Y.J. Shu, Y.J. Tang, Phase evolution and alloying mechanism of titanium aluminide nanoparticles, Journal of Alloys and Compounds, Volume 615, 5 December 2014
  • Ke Hua, Xiangyi Xue, Hongchao Kou, Jiangkun Fan, Bin Tang, Jinshan Li, Characterization of hot deformation microstructure of a near beta titanium alloy Ti-5553, Journal of Alloys and Compounds, Volume 615, 5 December 2014
  • Xinmei Hou, Penglong Qiu, Tao Yang, Kuo-Chih Chou, Synthesis of titanium nitride nanopowder at low temperature from the combustion synthesized precursor and the thermal stability, Journal of Alloys and Compounds, Volume 615, 5 December 2014
  • Ming Liu, Yan-Bing He, Wei Lv, Chen Zhang, Hongda Du, Baohua Li, Quan-Hong Yang, Feiyu Kang, High catalytic activity of anatase titanium dioxide for decomposition of electrolyte solution in lithium ion battery, Journal of Power Sources, Volume 268, 5 December 2014
  • Ariadne Helena P. de Oliveira, Helinando P. de Oliveira, Carbon nanotube/ polypyrrole nanofibers core–shell composites decorated with titanium dioxide nanoparticles for supercapacitor electrodes, Journal of Power Sources, Volume 268, 5 December 2014
  • Pengfei Cheng, Yang Liu, Peng Sun, Sisi Du, Yaxin Cai, Fengmin Liu, Jie Zheng, Geyu Lu, Hydrothermally growth of novel hierarchical structures titanium dioxide for high efficiency dye-sensitized solar cells, Journal of Power Sources, Volume 268, 5 December 2014
  • Lanfang Que, Zhang Lan, Wanxia Wu, Jihuai Wu, Jianming Lin, Miaoliang Huang, Titanium dioxide quantum dots: Magic materials for high performance underlayers inserted into dye-sensitized solar cells, Journal of Power Sources, Volume 268, 5 December 2014
  • Feng Gu, Wenjuan Huang, Shufen Wang, Xing Cheng, Yanjie Hu, Chunzhong Li, Improved photoelectric conversion efficiency from titanium oxide-coupled tin oxide nanoparticles formed in flame, Journal of Power Sources, Volume 268, 5 December 2014
  • Aslan Miriyev, David Barlam, Roni Shneck, Adin Stern, Nachum Frage, Steel to titanium solid state joining displaying superior mechanical properties, Journal of Materials Processing Technology, Volume 214, Issue 12, December 2014
  • X.P. Zhang, R. Shivpuri, A.K. Srivastava, Role of phase transformation in chip segmentation during high speed machining of dual phase titanium alloys, Journal of Materials Processing Technology, Volume 214, Issue 12, December 2014