Chromium(III) Chloride Hexahydrate

CrCl3• 6H2O
CAS 10060-12-5


Product Product Code Order or Specifications
(2N) 99% Chromium(III) Chloride Hexahydrate CR-CL-02-6HYD Contact American Elements
(3N) 99.9% Chromium(III) Chloride Hexahydrate  CR-CL-03-6HYD Contact American Elements
(4N) 99.99% Chromium(III) Chloride Hexahydrate  CR-CL-04-6HYD Contact American Elements
(5N) 99.999% Chromium(III) Chloride Hexahydrate  CR-CL-05-6HYD Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
CrCl3• 6H2O 10060-12-5 24856418 104957 MFCD00149660 233-038-3 trichlorochromium; hexahydrate N/A O.O.O.O.O.O.Cl[Cr](Cl)Cl InChI=1S/3ClH.Cr.
6H2O/h3*1H;;6*1H2/q;;;+3;;;;;;/p-3
LJAOOBNHPFKCDR-UHFFFAOYSA-K

PROPERTIES Compound Formula Mol. Wt. Appearance Melting Point Boiling Point Density

Exact Mass

Monoisotopic Mass Charge MSDS
Cl3CrH12O6 266.45 dark green solid 83°C N/A 1.76 264.910454 264.910454 0 Safety Data Sheet

Chloride IonChromium(III) Chloride Hexahydrate is an excellent water soluble crystalline Chromium source for uses compatible with chlorides. Chromium Chloride is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. We also produce Chromium Chloride Solution. Additional technical, research and safety information is available.

Chromium (Cr) atomic and molecular weight, atomic number and elemental symbolChromium (atomic symbol: Cr, atomic number: 24) is a Block D, Group 6, Period 4 element with an atomic weight of 51.9961. Chromium Bohr ModelThe number of electrons in each of Chromium's shells is 2, 8, 13, 1 and its electron configuration is [Ar] 3d5 4s1. Chromium was first discovered by Louis Nicolas Vauquelin in 1797. It was first isolated in 1798, also by Louis Nicolas Vauquelin. The chromium atom has a radius of 128 pm and a Van der Waals radius of 189 pm. In its elemental form, chromium has a lustrous steel-gray appearance. Elemental ChromiumChromium is the hardest metal element in the periodic table and the only element that exhibits antiferromagnetic ordering at room temperature, above which it tranforms into a paramagnetic solid. The most common source of chromium is chromite ore (FeCr2O4). Due to its various colorful compounds, Chromium was named after the Greek word 'chroma' meaning color. For more information on chromium, including properties, safety data, research, and American Elements' catalog of chromium products, visit the Chromium Information Center.


HEALTH, SAFETY & TRANSPORTATION INFORMATION
Material Safety Data Sheet MSDS
Signal Word Warning
Hazard Statements H302
Hazard Codes Xn
Risk Codes 22
Safety Precautions N/A
RTECS Number GB5450000
Transport Information N/A
WGK Germany 1
Globally Harmonized System of
Classification and Labelling (GHS)
Exclamation Mark-Acute Toxicity        

CHROMIUM(III) CHLORIDE HEXAHYDRATE SYNONYMS
Chromium trichloride hexahydrate, Hexaaquachromium(III) chloride, Chromic chloride hexahydrate, trichlorochromium hexahydrate, chromic chloride

CUSTOMERS FOR CHROMIUM(III) CHLORIDE HEXAHYDRATE HAVE ALSO LOOKED AT
Chromium Chloride Chromium Fluoride Chromium Acetate Chromium Metal Chromium Acetylacetonate
Chromium Nanoparticles Chromium Oxide Pellets Chromium Sheets Chromium Iron Tantalum Alloy Chromium Pellets
Chromium Oxide Chromium Wire Chromium Sputtering Target Aluminum Chromium Alloy Chromium Powder
Show Me MORE Forms of Chromium

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Chromium

  • Guangye Wei, Jingkui Qu, Zhihui Yu, Yongli Li, Qiang Guo, Tao Qi, Mineralizer effects on the synthesis of amorphous chromium hydroxide and chromium oxide green pigment using hydrothermal reduction method, Dyes and Pigments, Volume 113, February 2015
  • Fei Liu, Yehua Jiang, Han Xiao, Jun Tan, Study on fragmentation and dissolution behavior of carbide in a hot-rolled hypereutectic high chromium cast iron, Journal of Alloys and Compounds, Volume 618, 5 January 2015
  • Zhiwei Zhao, Hongjuan Zheng, Shaojing Liu, Jianhong Shen, Weiqiang Song, Jinshen Chen, Low temperature synthesis of chromium carbide (Cr3C2) nanopowders by a novel precursor method, International Journal of Refractory Metals and Hard Materials, Volume 48, January 2015
  • Meike V.F. Schlupp, Ji Woo Kim, Aude Brevet, Cyril Rado, Karine Couturier, Ulrich F. Vogt, Florence Lefebvre-Joud, Andreas Züttel, Avoiding chromium transport from stainless steel interconnects into contact layers and oxygen electrodes in intermediate temperature solid oxide electrolysis stacks, Journal of Power Sources, Volume 270, 15 December 2014
  • T.J. Pan, B. Zhang, J. Li, Y.X. He, F. Lin, An investigation on corrosion protection of chromium nitride coated Fe–Cr alloy as a bipolar plate material for proton exchange membrane fuel cells, Journal of Power Sources, Volume 269, 10 December 2014
  • Chun Wu, Jiao Gao, Qinglan Zhao, Youwei Zhang, Yansong Bai, Xingyan Wang, Xianyou Wang, Preparation and supercapacitive behaviors of the ordered mesoporous/microporous chromium carbide-derived carbons, Journal of Power Sources, Volume 269, 10 December 2014
  • W. Węglewski, M. Basista, A. Manescu, M. Chmielewski, K. Pietrzak, Th. Schubert, Effect of grain size on thermal residual stresses and damage in sintered chromium–alumina composites: Measurement and modeling, Composites Part B: Engineering, Volume 67, December 2014
  • Tapas Debnath, Ahamed Ullah, Claus H. Rüscher, Altaf Hussain, Chromium substitution in mullite type bismuth aluminate: Bi2CrxAl4−xO9 with 0≤x≤2.0, Journal of Solid State Chemistry, Volume 220, December 2014
  • Konstantinos Kapnisis, Georgios Constantinides, Harry Georgiou, Daniel Cristea, Camelia Gabor, Daniel Munteanu, Brigitta Brott, Peter Anderson, Jack Lemons, Andreas Anayiotos, Multi-scale mechanical investigation of stainless steel and cobalt–chromium stents, Journal of the Mechanical Behavior of Biomedical Materials, Volume 40, December 2014
  • Hui Zhang, Yong Zou, Zengda Zou, Chuanwei Shi, Effects of chromium addition on microstructure and properties of TiC–VC reinforced Fe-based laser cladding coatings, Journal of Alloys and Compounds, Volume 614, 25 November 2014

Recent Research & Development for Chlorides

  • Qingli Li, Hongying Liu, Yiting Wang, Zhen Sun, Fangmin Guo, Jianzhong Zhu, Methyl green and nitrotetrazolium blue chloride co-expression in colon tissue: A hyperspectral microscopic imaging analysis, Optics & Laser Technology, Volume 64, December 2014
  • Ram Kripal, Manju Singh, EPR and optical study of Mn2+ doped monohydrated dipotassium stannic chloride, Journal of Alloys and Compounds, Volume 613, 15 November 2014
  • S. Imran U. Shah, Andrew L. Hector, John R. Owen, Redox supercapacitor performance of nanocrystalline molybdenum nitrides obtained by ammonolysis of chloride- and amide-derived precursors, Journal of Power Sources, Volume 266, 15 November 2014
  • N.S. Benerji, Bijendra Singh, Performance of axicon based conical resonator (ABCR) with a xenon chloride (XeCl) excimer laser, Optics Communications, Volume 331, 15 November 2014
  • M. Torres-Luque, E. Bastidas-Arteaga, F. Schoefs, M. Sánchez-Silva, J.F. Osma, Non-destructive methods for measuring chloride ingress into concrete: State-of-the-art and future challenges, Construction and Building Materials, Volume 68, 15 October 2014
  • Mickael Saillio, Véronique Baroghel-Bouny, Fabien Barberon, Chloride binding in sound and carbonated cementitious materials with various types of binder, Construction and Building Materials, Volume 68, 15 October 2014
  • Andrew J. Blok, Rinkubahen Chhasatia, Jessirie Dilag, Amanda V. Ellis, Surface initiated polydopamine grafted poly([2-(methacryoyloxy)ethyl]trimethylammonium chloride) coatings to produce reverse osmosis desalination membranes with anti-biofouling properties, Journal of Membrane Science, Volume 468, 15 October 2014
  • Hesam Madani, Alireza Bagheri, Tayebeh Parhizkar, Amirmaziar Raisghasemi, Chloride penetration and electrical resistivity of concretes containing nanosilica hydrosols with different specific surface areas, Cement and Concrete Composites, Volume 53, October 2014
  • Mathias Maes, Nele De Belie, Resistance of concrete and mortar against combined attack of chloride and sodium sulphate, Cement and Concrete Composites, Volume 53, October 2014
  • . Castañeda, A. Maldonado, J. Vega Pérez, M. de la L. Olvera, C. Torres-Torres, Electrical and optical properties of nanostructured indium doped zinc oxide thin films deposited by ultrasonic chemical spray technique, starting from zinc acetylacetonate and indium chloride, Materials Science in Semiconductor Processing, Volume 26, October 2014