Energy Harvesting from a Thermoelectric Zinc Antimonide Thin Film under Steady and Unsteady Operating Conditions.

Title Energy Harvesting from a Thermoelectric Zinc Antimonide Thin Film under Steady and Unsteady Operating Conditions.
Authors M. Mirhosseini; A. Rezania; B. Iversen; L. Rosendahl
Journal Materials (Basel)
DOI 10.3390/ma11122365
Abstract

In practice, there are some considerations to study stability, reliability, and output power optimization of a thermoelectric thin film operating dynamically. In this study stability and performance of a zinc antimonide thin film thermoelectric (TE) specimen is evaluated under transient with thermal and electrical load conditions. Thermoelectric behavior of the specimen and captured energy in each part of a thermal cycle are investigated. Glass is used as the substrate of the thin film, where the heat flow is parallel to the length of the thermoelectric element. In this work, the thermoelectric specimen is fixed between a heat sink exposed to the ambient temperature and a heater block. The specimen is tested under various electrical load cycles during a wide range of thermal cycles. The thermal cycles are provided for five different aimed temperatures at the hot junction, from 160 to 350 °C. The results show that the specimen generates approximately 30% of its total electrical energy during the cooling stage and 70% during the heating stage. The thin film generates maximum power of 8.78, 15.73, 27.81, 42.13, and 60.74 kW per unit volume of the thermoelectric material (kW/m³), excluding the substrate, corresponding to hot side temperature of 160, 200, 250, 300, and 350 °C, respectively. Furthermore, the results indicate that the thin film has high reliability after about one thousand thermal and electrical cycles, whereas there is no performance degradation.

Citation M. Mirhosseini; A. Rezania; B. Iversen; L. Rosendahl.Energy Harvesting from a Thermoelectric Zinc Antimonide Thin Film under Steady and Unsteady Operating Conditions.. Materials (Basel). 2018;11(12). doi:10.3390/ma11122365

Related Elements

Zinc

See more Zinc products. Zinc (atomic symbol: Zn, atomic number: 30) is a Block D, Group 12, Period 4 element with an atomic weight of 65.38. The number of electrons in each of zinc's shells is 2, 8, 18, 2, and its electron configuration is [Ar] 3d10 4s2. Zinc Bohr ModelThe zinc atom has a radius of 134 pm and a Van der Waals radius of 210 pm. Zinc was discovered by Indian metallurgists prior to 1000 BC and first recognized as a unique element by Rasaratna Samuccaya in 800. Zinc was first isolated by Andreas Marggraf in 1746. In its elemental form, zinc has a silver-gray appearance. It is brittle at ordinary temperatures but malleable at 100 °C to 150 °C.Elemental Zinc It is a fair conductor of electricity, and burns in air at high red producing white clouds of the oxide. Zinc is mined from sulfidic ore deposits. It is the 24th most abundant element in the earth's crust and the fourth most common metal in use (after iron, aluminum, and copper). The name zinc originates from the German word "zin," meaning tin.

Antimony

See more Antimony products. Antimony (atomic symbol: Sb, atomic number: 51) is a Block P, Group 15, Period 5 element with an atomic radius of 121.760. Antimony Bohr Model The number of electrons in each of antimony's shells is 2, 8, 18, 18, 5 and its electron configuration is [Kr] 4d10 5s2 5p3. The antimony atom has a radius of 140 pm and a Van der Waals radius of 206 pm. Antimony was discovered around 3000 BC and first isolated by Vannoccio Biringuccio in 1540 AD. In its elemental form, antimony has a silvery lustrous gray appearance. Elemental Antimony The most common source of antimony is the sulfide mineral known as stibnite (Sb2S3), although it sometimes occurs natively as well. Antimony has numerous applications, most commonly in flame-retardant materials. It also increases the hardness and strength of lead when combined in an alloy and is frequently employed as a dopant in semiconductor materials. Its name is derived from the Greek words anti and monos, meaning a metal not found by itself.

Related Forms & Applications