First observation of labile arsenic stratification in aluminum sulfate-amended sediments using high resolution Zr-oxide DGT.

Title First observation of labile arsenic stratification in aluminum sulfate-amended sediments using high resolution Zr-oxide DGT.
Authors J. Lin; Q. Sun; S. Ding; D. Wang; Y. Wang; D.C.W. Tsang
Journal Sci Total Environ
DOI 10.1016/j.scitotenv.2017.07.165
Abstract

Arsenic contamination in sediments has received increasing attention because it may be released to the water and threaten aquatic organisms. In this study, aluminum sulfate (ALS) was used to immobilize As in sediments through dosage-series and time-series experiments. Diffusive gradients in thin films (DGT) was used to obtain labile As at a vertically 2.0mm resolution. Our results indicated that a "static" layer with extremely low labile As concentration (minimally 0.13mgL(-1)) with weak variation (<30% RSD) formed within the top 12mm sediment layer at the dosage of 6-12ALS/Asmobile (kmolmol(-1), Asmobile means the total mobile As in top 40mm sediment) and on days 30-80 after amendment at the dosage of 9 ALS/Asmobile. The maximum labile As decreased from 1.83 to 0.99?gL(-1) and from 1.96 to 1.20?gL(-1) in the dosage-series (3-12 ALS/Asmobile) and time-series (10-80days) experiments, respectively, while the depths showing the maximal concentrations moved deeper from 22 to 34mm and 20 to 32mm in the sediments. It implied a reduced upward diffusion potential of labile As to the static layer in deeper sediments. Both distribution coefficient for As between sediment solid pool and pore water (Kd) and the adsorption rate constant (k1) consistently increased, reflecting that As release from sediment solid became increasingly difficult with the progress of ALS immobilization. The results of this millimeter-scale investigation showed that ALS could efficiently immobilize As in sediments under simulated conditions.

Citation J. Lin; Q. Sun; S. Ding; D. Wang; Y. Wang; D.C.W. Tsang.First observation of labile arsenic stratification in aluminum sulfate-amended sediments using high resolution Zr-oxide DGT.. Sci Total Environ. 2017;609:304310. doi:10.1016/j.scitotenv.2017.07.165

Related Elements

Arsenic

See more Arsenic products. Arsenic (atomic symbol: As, atomic number: 33) is a Block P, Group 15, Period 4 element with an atomic radius of 74.92160. Arsenic Bohr ModelThe number of electrons in each of arsenic's shells is 2, 8, 18, 5 and its electron configuration is [Ar] 3d10 4s2 4p3. The arsenic atom has a radius of 119 pm and a Van der Waals radius of 185 pm. Arsenic was discovered in the early Bronze Age, circa 2500 BC. It was first isolated by Albertus Magnus in 1250 AD. In its elemental form, arsenic is a metallic grey, brittle, crystalline, semimetallic solid. Elemental ArsenicArsenic is found in numerous minerals including arsenolite (As2O3), arsenopyrite (FeAsS), loellingite (FeAs2), orpiment (As2S3), and realgar (As4S4). Arsenic has numerous applications as a semiconductor and other electronic applications as indium arsenide, silicon arsenide and tin arsenide. Arsenic is finding increasing uses as a doping agent in solid-state devices such as transistors.

Aluminum

See more Aluminum products. Aluminum (or Aluminium) (atomic symbol: Al, atomic number: 13) is a Block P, Group 13, Period 3 element with an atomic weight of 26.9815386. It is the third most abundant element in the earth's crust and the most abundant metallic element. Aluminum Bohr Model Aluminum's name is derived from alumina, the mineral from which Sir Humphrey Davy attempted to refine it from in 1812. Aluminum was first predicted by Antoine Lavoisier 1787 and first isolated by Hans Christian Øersted in 1825. Aluminum is a silvery gray metal that possesses many desirable characteristics. It is light, nonmagnetic and non-sparking. It stands second among metals in the scale of malleability, and sixth in ductility. It is extensively used in many industrial applications where a strong, light, easily constructed material is needed. Elemental AluminumAlthough it has only 60% of the electrical conductivity of copper, it is used in electrical transmission lines because of its light weight. Pure aluminum is soft and lacks strength, but alloyed with small amounts of copper, magnesium, silicon, manganese, or other elements, it imparts a variety of useful properties.

Sulfur

See more Sulfur products. Sulfur (or Sulphur) (atomic symbol: S, atomic number: 16) is a Block P, Group 16, Period 3 element with an atomic radius of 32.066. Sulfur Bohr ModelThe number of electrons in each of Sulfur's shells is 2, 8, 6 and its electron configuration is [Ne] 3s2 3p4. In its elemental form, sulfur has a light yellow appearance. The sulfur atom has a covalent radius of 105 pm and a Van der Waals radius of 180 pm. In nature, sulfur can be found in hot springs, meteorites, volcanoes, and as galena, gypsum, and epsom salts. Sulfur has been known since ancient times but was not accepted as an element until 1777, when Antoine Lavoisier helped to convince the scientific community that it was an element and not a compound.

Related Forms & Applications