Lanthanum Chunk

High Purity La Chunk
CAS 7439-91-0


Product Product Code Order or Specifications
(2N) 99% Lanthanum Chunk LA-M-02-CK Contact American Elements
(3N) 99.9% Lanthanum Chunk LA-M-03-CK Contact American Elements
(4N) 99.99% Lanthanum Chunk LA-M-04-CK Contact American Elements
(5N) 99.999% Lanthanum Chunk LA-M-05-CK Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
La 7439-91-0 24855951 23926 MFCD00011066 231-099-0 N/A [La] InChI=1S/La FZLIPJUXYLNCLC-UHFFFAOYSA-N

PROPERTIES Mol. Wt. Appearance Density Tensile Strength Melting Point Boiling Point Thermal Conductivity Electrical Resistivity Eletronegativity Specific Heat Heat of Vaporization Heat of Fusion MSDS
138.91 Silvery 6146 kg/m³ N/A 920°C 3470°C 0.134 W/cm/K @ 298.2 K 5.70 microhm-cm @ 25°C 1.1 Paulings 0.047 Cal/g/K @ 25 °C 96 K-Cal/gm atom at 3457 °C 2.40 Cal/gm mole Safety Data Sheet

High Purity ChunkAmerican Elements specializes in producing high purity Lanthanum Chunk using crystallization, solid state and other ultra high purification processes such as sublimation. Standard Chunk pieces are amorphous uniform pieces ranging in size from 5-15 mm. American Elements specializes in producing custom compositions for commercial and research applications and for new proprietary technologies. American Elements also casts any of the rare earth metals and most other advanced materials into granules, rod, bar or plate form, as well as other machined shapes and through other processes such as nanoparticles (See also application discussion at Nanotechnology Information and at Quantum Dots) and in the form of solutions and organometallics. We also produce Lanthanum as rod, pellets, powder, pieces, disc, ingot, wire, and in compound forms, such as oxide. Other shapes are available by request.

Lanthanum (La) atomic and molecular weight, atomic number and elemental symbol Lanthanum (atomic symbol: La, atomic number: 57) is a Block F, Group 3, Period 6 element with an atomic weight of 138.90547. The number of electrons in each of lanthanum's shells is [2, 8, 18, 18, 9, 2] and its electron configuration is [Xe] 5d1 6s2. The lanthanum atom has a radius of 187 pm and a Van der Waals radius of 240 pm. Lanthanum Bohr Model Lanthanum was first discovered by Carl Mosander in 1838. In its elemental form, lanthanum has a silvery white appearance. Elemental Lanthanum It is a soft, malleable, and ductile metal that oxidizes easily in air. Lanthanum is the first element in the rare earth or lanthanide series. It is the model for all the other trivalent rare earths and it is the second most abundant of the rare earths after cerium. Lanthanum is found in minerals such as monazite and bastnasite. The name lanthanum originates from the Greek word "Lanthaneia," which means 'to lie hidden'. For more information on lanthanum, including properties, safety data, research, and American Elements' catalog of lanthanum products, visit the Lanthanum Information Center.


HEALTH, SAFETY & TRANSPORTATION INFORMATION
Danger
H260
N/A
N/A
N/A
N/A
UN 3208 4.3/PG 1
3
Flame-Flammables        

CUSTOMERS FOR LANTHANUM CHUNK HAVE ALSO LOOKED AT
Lanthanum Foil Lanthanum Pellets Lanthanum Wire Lanthanum Sputtering Target Lanthanum Nanoparticles
Lanthanum Nickel Cobalt Alloy Lanthanum Chloride Lanthanum Acetate Lanthanum Oxide Pellets Lanthanum Powder
Lanthanum Nitrate Lanthanum Acetylacetonate Lanthanum Oxide Lanthanum Metal Lanthanum Calcium Manganite (LCM)
Show Me MORE Forms of Lanthanum

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Lanthanum

  • Morteza Hadi, Mahmood Meratian, Ali Shafyei, The effect of lanthanum on the microstructure and high temperature mechanical properties of a beta-solidifying TiAl alloy, Journal of Alloys and Compounds, Volume 618, 5 January 2015
  • Stefan Kuhn, Andreas Herrmann, Christian Rüssel, Judd–Ofelt analysis of Sm3+-doped lanthanum-aluminosilicate glasses, Journal of Luminescence, Volume 157, January 2015
  • Fan Yang, Yanfei Wang, Xiaofeng Zhao, Ping Xiao, Enhanced ionic conductivity in pyrochlore and fluorite mixed phase yttrium-doped lanthanum zirconate, Journal of Power Sources, Volume 273, 1 January 2015
  • Xiaolong Chen, Xueqiang Cao, Binglin Zou, Jun Gong, Chao Sun, High-temperature corrosion behaviour of plasma sprayed lanthanum magnesium hexaluminate coating by vanadium oxide, Journal of the European Ceramic Society, Volume 35, Issue 1, January 2015
  • Pritty Rao, Sanjiv Kumar, R.B. Tokas, N.K. Sahoo, A probe into compositional and structural dependence of optical properties of lanthanum fluoride films prepared by resistive heating, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Volume 342, 1 January 2015
  • Jie Xie, Yan Lin, Chunjie Li, Deyi Wu, Hainan Kong, Removal and recovery of phosphate from water by activated aluminum oxide and lanthanum oxide, Powder Technology, Volume 269, January 2015
  • Pengrong Ren, Huiqing Fan, Xin Wang, Dong Guangzhi, Phase transition, high figure of merit and polar nano-regions in dielectric tunable lanthanum substituted barium titanate, Journal of Alloys and Compounds, Volume 617, 25 December 2014
  • Ding Rong Ou, Mojie Cheng, Stability of manganese-oxide-modified lanthanum strontium cobaltite in the presence of chromia, Journal of Power Sources, Volume 272, 25 December 2014
  • Chao Zhang, Zhi-Jian Li, Hong Jiang, Xue-Ning Hu, Guo-Hua Zhong, Yue-Hua Su, Thermodynamic and mechanical properties of actinium and lanthanum dihydride, Journal of Alloys and Compounds, Volume 616, 15 December 2014
  • Caroline Cássia Alves, Julien Demoucron, Bruno Caillier, Philippe Guillot, Robert Mauricot, Jeannette Dexpert-Ghys, José Maurício Almeida Caiut, Amino acid coupled to Pr3+ doped lanthanum orthophosphate (LaPO4) nanoparticles, Materials Letters, Volume 137, 15 December 2014