Skip to Page Content

Ammonium Tetrathiomolybdate

(NH4)2MoS4
CAS 15060-55-6


Product Product Code Request Quote
(2N) 99% Ammonium Tetrathiomolybdate AM-THMO-02 Request Quote
(3N) 99.9% Ammonium Tetrathiomolybdate AM-THMO-03 Request Quote
(4N) 99.99% Ammonium Tetrathiomolybdate AM-THMO-04 Request Quote
(5N) 99.999% Ammonium Tetrathiomolybdate AM-THMO-05 Request Quote

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
(NH4)2MoS4 15060-55-6 162220186 10106661 MFCD00136013 N/A diazanium; molybdenum; tetrasulfide N/A [S-2].[S-2].[S-
2].[S-2].[Mo].[
NH4+].[NH4+]
InChI=1S/Mo.2H
3N.4S/h;2*1H3;;
;;/q;;;4*-2/p+2
SSWUEGNZIONBHZ-UHFFFAOYSA-P

PROPERTIES Compound Formula Mol. Wt. Appearance Melting Point Boiling Point Density Exact Mass Monoisotopic Mass Charge MSDS
H8MoN2S4 260.28 Red. green, purple, or black powder >300 °C N/A N/A 261.86244 261.86244 -6 Safety Data Sheet

Ammonium Tetrathiomolybdate is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Molybdenum (Mo) atomic and molecular weight, atomic number and elemental symbolMolybdenum (atomic symbol: Mo, atomic number: 42) is a Block D, Group 6, Period 5 element with an atomic weight of 95.96. Molybdenum Bohr ModelThe number of electrons in each of molybdenum's shells is [2, 8, 18, 13, 1] and its electron configuration is [Kr] 4d5 5s1. The molybdenum atom has a radius of 139 pm and a Van der Waals radius of 209 pm. In its elemental form, molybdenum has a gray metallic appearance. Molybdenum was discovered by Carl Wilhelm in 1778 and first isolated by Peter Jacob Hjelm in 1781. Molybdenum is the 54th most abundant element in the earth's crust.Elemental Molybdenum It has the third highest melting point of any element, exceeded only by tungsten and tantalum. Molybdenum does not occur naturally as a free metal, it is found in various oxidation states in minerals. The primary commercial source of molybdenum is molybdenite, although it is also recovered as a byproduct of copper and tungsten mining. The origin of the name Molybdenum comes from the Greek word molubdos meaning lead. For more information on molybdenum, including properties, safety data, research, and American Elements' catalog of molybdenum products, visit the Molybdenum element page.

Sulfur Bohr ModelSulfur (S) atomic and molecular weight, atomic number and elemental symbolSulfur or Sulphur (atomic symbol: S, atomic number: 16) is a Block P, Group 16, Period 3 element with an atomic radius of 32.066. The number of electrons in each of Sulfur's shells is 2, 8, 6 and its electron configuration is [Ne] 3s2 3p4. In its elemental form, sulfur has a light yellow appearance. The sulfur atom has a covalent radius of 105 pm and a Van der Waals radius of 180 pm. In nature, sulfur can be found in hot springs, meteorites, volcanoes, and as galena, gypsum, and epsom salts. Sulfur has been known since ancient times but was not accepted as an element until 1777, when Antoine Lavoisier helped to convince the scientific community that it was an element and not a compound. For more information on sulfur, including properties, safety data, research, and American Elements' catalog of sulfur products, visit the Sulfur element page.


HEALTH, SAFETY & TRANSPORTATION INFORMATION
Material Safety Data Sheet MSDS
Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
Risk Codes N/A
Safety Precautions N/A
RTECS Number N/A
Transport Information N/A
WGK Germany 3
Globally Harmonized System of
Classification and Labelling (GHS)
N/A        

AMMONIUM TETRATHIOMOLYBDATE SYNONYMS
Diammonium disulfido(dithioxo)molybdenum; Ammonium molybdenum sulfide; Diammonium tetrathioxomolybdate(2-); diammonium molybdenum tetrasulfide; Thiomolybdic acid, diammonium salt; Molybdate(2-), tetrathioxo-, diammonium, (T-4)-

CUSTOMERS FOR AMMONIUM TETRATHIOMOLYBDATE HAVE ALSO LOOKED AT
Molybdenum Nanoparticles Molybdenum Rod Nickel Molybdenumv Alloy Titanium Molybdenum Alloy Molybdenum Sputtering Target
Molybdenum Oxide Molybdenum Powder Molybdenum Acetate Molybdenum Wire Molybdenum Oxide Pellets
Molybdenum Pellets Molybdenum Sulfate Molybdenum Chloride Molybdenum Metal Molybdenum Foil
Show Me MORE Forms of Molybdenum

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Molybdenum

  • A simple spectrophotometric method for the determination of trace levels of molybdenum using N,N'-bis(2-hydroxy-5-bromo-benzyl)1,2 diaminopropane. Kara D, Karadaş C. Spectrochim Acta A Mol Biomol Spectrosc. 2015 Mar 13: Spectrochim Acta A Mol Biomol Spectrosc
  • Molybdenum disulfide as a highly efficient adsorbent for non-polar gases. Yu N, Wang L, Li M, Sun X, Hou T, Li Y. Phys Chem Chem Phys. 2015 Apr 13. : Phys Chem Chem Phys
  • Oscillatory motion in layered materials: graphene, boron nitride, and molybdenum disulfide. Ye Z, Otero-de-la-Roza A, Johnson ER, Martini A. Nanotechnology. 2015 Apr 24: Nanotechnology
  • Importance of Hydrophilic Pretreatment in Hydrothermal Growth of Amorphous Molybdenum Sulfide for Hydrogen Evolution Catalysis. Bose R, Balasingam SK, Shin S, Jin Z, Kwon DH, Jun Y, Min YS. Langmuir. 2015 Apr 16. : Langmuir
  • Correction to "Reversible Interconversion of CO2 and Formate by a Molybdenum-Containing Formate Dehydrogenase". Bassegoda A, Madden C, Wakerley DW, Reisner E, Hirst J. J Am Chem Soc. 2015 Apr 8: J Am Chem Soc
  • Towards Barrier Free Contact to Molybdenum Disulfide using Graphene Electrodes. Liu Y, Wu H, Cheng HC, Yang S, Zhu E, He Q, Ding M, Li D, Guo J, Weiss N, Huang Y, Duan X. Nano Lett. 2015 Apr 16. : Nano Lett
  • Synthesis of nanostructured clean surface molybdenum carbides on graphene sheets as efficient and stable hydrogen evolution reaction catalysts. He C, Tao J. Chem Commun (Camb). 2015 Apr 16. : Chem Commun (Camb)
  • Synthesis of Waste Cooking Oil Based Biodiesel via Ferric-Manganese Promoted Molybdenum Oxide / Zirconia Nanoparticle Solid acid Catalyst: Influence of Ferric and Manganese Dopants. Alhassan FH, Rashid U, Taufiq-Yap YH. J Oleo Sci. 2015 Apr 6. : J Oleo Sci
  • Fate and Transport of Molybdenum Disulfide Nanomaterials in Sand Columns. Lanphere JD, Luth CJ, Guiney LM, Mansukhani ND, Hersam MC, Walker SL. Environ Eng Sci. 2015 Feb 1
  • Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production. Wu HB, Xia BY, Yu L, Yu XY, Lou XW. Nat Commun. 2015 Mar 11

Recent Research & Development for Sulfur

  • Vertically Aligned Sulfur-Graphene Nanowalls on Substrates for Ultrafast Lithium-Sulfur Batteries. Li B, Li S, Liu J, Wang B, Yang S. Nano Lett. 2015 Apr 10. : Nano Lett
  • Pigment production and isotopic fractionations in continuous culture: okenone producing purple sulfur bacteria Part II. Smith DA, Steele A, Fogel ML. Geobiology. 2015 May: Geobiology
  • Highly Cyclable Lithium-Sulfur Batteries with a Dual-Type Sulfur Cathode and a Lithiated Si/SiOx Nanosphere Anode. Lee SK, Oh SM, Park E, Scrosati B, Hassoun J, Park MS, Kim YJ, Kim H, Belharouak I, Sun YK. Nano Lett. 2015 Apr 9. : Nano Lett
  • High Sulfur Content Polymer Nanoparticles Obtained from Interfacial Polymerization of Sodium Polysulfide and 1,2,3-Trichloropropane in Water. Lim J, Jung U, Joe WT, Kim ET, Pyun J, Char K. Macromol Rapid Commun. 2015 Apr 7.: Macromol Rapid Commun
  • Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments. Hansel CM, Lentini CJ, Tang Y, Johnston DT, Wankel SD, Jardine PM. ISME J. 2015 Apr 14.: ISME J
  • 1-Heteroaryl-3-phenoxypropan-2-ones as inhibitors of cytosolic phospholipase A2α and fatty acid amide hydrolase: Effect of the replacement of the ether oxygen with sulfur and nitrogen moieties on enzyme inhibition and metabolic stability. Sundermann T, Fabian J, Hanekamp W, Lehr M. Bioorg Med Chem. 2015 Mar 21.: Bioorg Med Chem
  • Interaction between Nitrogen and Sulfur in Co-Doped Graphene and Synergetic Effect in Supercapacitor. Wang T, Wang LX, Wu DL, Xia W, Jia DZ. Sci Rep. 2015 Apr 16: Sci Rep
  • Protic-Salt-Derived Nitrogen/Sulfur-Codoped Mesoporous Carbon for the Oxygen Reduction Reaction and Supercapacitors. Zhang S, Ikoma A, Ueno K, Chen Z, Dokko K, Watanabe M. ChemSusChem. 2015 Apr 8.: ChemSusChem
  • The uptake and excretion of partially oxidized sulfur expands the repertoire of energy resources metabolized by hydrothermal vent symbioses. Beinart RA, Gartman A, Sanders JG, Luther GW, Girguis PR. Proc Biol Sci. 2015 May 7: Proc Biol Sci
  • Encapsulation of S/SWNT with PANI Web for Enhanced Rate and Cycle Performance in Lithium Sulfur Batteries. Kim JH, Fu K, Choi J, Kil K, Kim J, Han X, Hu L, Paik U. Sci Rep. 2015 Mar 10