Skip to Page Content

Ammonium Tetrathiomolybdate

CAS 15060-55-6

Product Product Code Request Quote
(2N) 99% Ammonium Tetrathiomolybdate AM-THMO-02 Request Quote
(3N) 99.9% Ammonium Tetrathiomolybdate AM-THMO-03 Request Quote
(4N) 99.99% Ammonium Tetrathiomolybdate AM-THMO-04 Request Quote
(5N) 99.999% Ammonium Tetrathiomolybdate AM-THMO-05 Request Quote

Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
(NH4)2MoS4 15060-55-6 162220186 10106661 MFCD00136013 N/A diazanium; molybdenum; tetrasulfide N/A [S-2].[S-2].[S-

PROPERTIES Compound Formula Mol. Wt. Appearance Melting Point Boiling Point Density Exact Mass Monoisotopic Mass Charge MSDS
H8MoN2S4 260.28 Red. green, purple, or black powder >300 °C N/A N/A 261.86244 261.86244 -6 Safety Data Sheet

Ammonium Tetrathiomolybdate is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Molybdenum (Mo) atomic and molecular weight, atomic number and elemental symbolMolybdenum (atomic symbol: Mo, atomic number: 42) is a Block D, Group 6, Period 5 element with an atomic weight of 95.96. Molybdenum Bohr ModelThe number of electrons in each of molybdenum's shells is [2, 8, 18, 13, 1] and its electron configuration is [Kr] 4d5 5s1. The molybdenum atom has a radius of 139 pm and a Van der Waals radius of 209 pm. In its elemental form, molybdenum has a gray metallic appearance. Molybdenum was discovered by Carl Wilhelm in 1778 and first isolated by Peter Jacob Hjelm in 1781. Molybdenum is the 54th most abundant element in the earth's crust.Elemental Molybdenum It has the third highest melting point of any element, exceeded only by tungsten and tantalum. Molybdenum does not occur naturally as a free metal, it is found in various oxidation states in minerals. The primary commercial source of molybdenum is molybdenite, although it is also recovered as a byproduct of copper and tungsten mining. The origin of the name Molybdenum comes from the Greek word molubdos meaning lead. For more information on molybdenum, including properties, safety data, research, and American Elements' catalog of molybdenum products, visit the Molybdenum element page.

Sulfur Bohr ModelSulfur (S) atomic and molecular weight, atomic number and elemental symbolSulfur or Sulphur (atomic symbol: S, atomic number: 16) is a Block P, Group 16, Period 3 element with an atomic radius of 32.066. The number of electrons in each of Sulfur's shells is 2, 8, 6 and its electron configuration is [Ne] 3s2 3p4. In its elemental form, sulfur has a light yellow appearance. The sulfur atom has a covalent radius of 105 pm and a Van der Waals radius of 180 pm. In nature, sulfur can be found in hot springs, meteorites, volcanoes, and as galena, gypsum, and epsom salts. Sulfur has been known since ancient times but was not accepted as an element until 1777, when Antoine Lavoisier helped to convince the scientific community that it was an element and not a compound. For more information on sulfur, including properties, safety data, research, and American Elements' catalog of sulfur products, visit the Sulfur element page.

Material Safety Data Sheet MSDS
Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
Risk Codes N/A
Safety Precautions N/A
RTECS Number N/A
Transport Information N/A
WGK Germany 3
Globally Harmonized System of
Classification and Labelling (GHS)

Diammonium disulfido(dithioxo)molybdenum; Ammonium molybdenum sulfide; Diammonium tetrathioxomolybdate(2-); diammonium molybdenum tetrasulfide; Thiomolybdic acid, diammonium salt; Molybdate(2-), tetrathioxo-, diammonium, (T-4)-

Molybdenum Nanoparticles Molybdenum Rod Nickel Molybdenumv Alloy Titanium Molybdenum Alloy Molybdenum Sputtering Target
Molybdenum Oxide Molybdenum Powder Molybdenum Acetate Molybdenum Wire Molybdenum Oxide Pellets
Molybdenum Pellets Molybdenum Sulfate Molybdenum Chloride Molybdenum Metal Molybdenum Foil
Show Me MORE Forms of Molybdenum

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.

Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Molybdenum

  • Thin Films of Molybdenum Disulfide Doped with Chromium by Aerosol-Assisted Chemical Vapor Deposition (AACVD). David J. Lewis, Aleksander A. Tedstone, Xiang Li Zhong, et. al. Chem. Mater.: January 31, 2015
  • Effect of Nanostructure Building Formation on High Current Field Emission Properties in Individual Molybdenum Nanocones. Yan Shen, Ningsheng Xu, Shaozhi Deng, Shuai Tang, Yu Zhang, Fei Liu, and Jun Chen. ACS Appl. Mater. Interfaces: January 27, 2015
  • Electrocatalytic Activity of Molybdenum Disulfide Nanosheets Enhanced by Self-Doped Polyaniline for Highly Sensitive and Synergistic Determination of Adenine and Guanine. Tao Yang, Ruirui Yang, Huaiyin Chen, Fuxin Nan, Tong Ge, and Kui Jiao. ACS Appl. Mater. Interfaces: January 14, 2015
  • Combination of Redox-Active Ligand and Lewis Acid for Dioxygen Reduction with ?-Bound Molybdenum-Quinonoid Complexes. Justin T. Henthorn, Sibo Lin, and Theodor Agapie. J. Am. Chem. Soc.: January 10, 2015
  • Synthesis of 4-Quinolones via a Carbonylative Sonogashira Cross-Coupling Using Molybdenum Hexacarbonyl as a CO Source. Linda Åkerbladh, Patrik Nordeman, Matyas Wejdemar, Luke R. Odell, and Mats Larhed. J. Org. Chem.: January 9, 2015
  • Millisecond Laser Ablation of Molybdenum Target in Reactive Gas toward MoS2 Fullerene-Like Nanoparticles with Thermally Stable Photoresponse. Shu-Tao Song, Lan Cui, Jing Yang, and Xi-Wen Du. ACS Appl. Mater. Interfaces: January 8, 2015
  • Resonant Inelastic X-ray Scattering of Molybdenum oxides and Sulfides. Rowena Thomas, Josh Kas, Pieter Glatzel, Mustafa Al Samarai, Frank M. F. de Groot, Roberto Alonso Mori, Matjaž Kavi, Matjaz Zitnik, Klemen Bucar, John J. Rehr, and Moniek Tromp. J. Phys. Chem. C: January 7, 2015
  • Sulfur Dioxide Activation: A Theoretical Investigation into Dual S-O Bond Cleavage by Three-Coordinate Molybdenum(III) Complexes. Robert Robinson, Jr., Kiana Khadem Abbasi, Alireza Ariafard, Robert Stranger, and Brian F. Yates. Inorg. Chem.: January 5, 2015
  • Synergistic Toughening of Graphene OxideMolybdenum Disulfide–Thermoplastic Polyurethane Ternary Artificial Nacre. Sijie Wan, Yuchen Li, Jingsong Peng, Han Hu, Qunfeng Cheng, and Lei Jiang. ACS Nano: January 5, 2015
  • Highly Selective Molybdenum ONO Pincer Complex Initiates the Living Ring-Opening Metathesis Polymerization of Strained Alkynes with Exceptionally Low Polydispersity Indices. Donatela E. Bellone, Justin Bours, Elisabeth H. Menke, and Felix R. Fischer. J. Am. Chem. Soc.: December 23, 2014

Recent Research & Development for Sulfur

  • Permselective Graphene Oxide Membrane for High-Stable and Anti-Self-Discharge Lithium-Sulfur Batteries. Jia-Qi Huang, Ting-Zhou Zhuang, Qiang Zhang, Hong-Jie Peng, Cheng-Meng Chen, and Fei Wei. ACS Nano: February 16, 2015
  • Sulfur Derivatives of the Natural Polyarsenical Arsenicin A: Biologically Active, OrganoMetallic ArsenicSulfur Cages Related to the Minerals Realgar and Uzonite. Di Lu, Sundaram Arulmozhiraja, Michelle L. Coote, A. David Rae, Geoff Salem, Anthony C. Willis, and S. Bruce Wild , Shirine Benhenda, Valerie Lallemand Breitenbach, and Hugues de Thé , Xiaoyi Zhai, Philip J. Hogg, and Pierre J. Dilda. Organometallics: February 11, 2015
  • First-Principles Study of Redox End-Members in Lithium-Sulfur Batteries. Haesun Park, Hyun Seung Koh, and Donald J. Siegel. J. Phys. Chem. C: February 9, 2015
  • Mesoporous Carbon Interlayers with Tailored Pore Volume as Polysulfide Reservoir for High-Energy Lithium–Sulfur Batteries. Juan Balach, Tony Jaumann, Markus Klose, Steffen Oswald, Jürgen Eckert, and Lars Giebeler. J. Phys. Chem. C: February 5, 2015
  • Distribution of DNA Adducts and Corresponding Tissue Damage of Sprague–Dawley Rats with Percutaneous Exposure to Sulfur Mustard. Lijun Yue, Yajiao Zhang, Jia Chen, Zengming Zhao, Qin Liu, Ruiqin Wu, Lei Guo, Jun He, Jun Zhao, Jianwei Xie, and Shuangqing Peng. Chem. Res. Toxicol.: February 3, 2015
  • Mutual Inhibition between Catalytic Impurities of Sulfur and Those of Calcium in Coke during Carbon–Air and Carbon–CO2 Reactions. Jin Xiao, Qifan Zhong, Fachuang Li, Jindi Huang, Yanbin Zhang, and Bingjie Wang. Energy Fuels: February 3, 2015
  • Solvent Activity in Electrolyte Solutions Controls Electrochemical Reactions in Li-Ion and Li-Sulfur Batteries. Heejoon Moon, Toshihiko Mandai, Ryoichi Tatara, Kazuhide Ueno, Azusa Yamazaki, Kazuki Yoshida, Shiro Seki, Kaoru Dokko, and Masayoshi Watanabe. J. Phys. Chem. C: February 2, 2015
  • Identification, Synthesis, and Characterization of Novel Sulfur-Containing Volatile Compounds from the In-Depth Analysis of Lisbon Lemon Peels (Citrus limon L. Burm. f. cv. Lisbon). Robert J. Cannon, Arkadiusz Kazimierski, Nicole L. Curto, Jing Li, Laurence Trinnaman, Adam J. Ja?czuk, David Agyemang, Neil C. Da Costa, and Michael Z. Chen. J. Agric. Food Chem.: January 31, 2015
  • Mineralogical and Elemental Analysis of Some High-Sulfur Indian Paleogene Coals: A Statistical Approach. Binoy K. Saikia, Peipei Wang, Ananya Saikia, Hongjian Song, Jingjing Liu, Jianpeng Wei, and Upendra N. Gupta. Energy Fuels: January 29, 2015
  • Ionic Liquid–Derived Nitrogen–Enriched Carbon/Sulfur Composite Cathodes with Hierarchical Microstructure – A Step Toward Durable High Energy and High Performance Lithium–Sulfur Batteries. Artur Schneider, Christoph Weidmann, Christian Suchomski, Heino Sommer, Jürgen Janek, and Torsten Brezesinski. Chem. Mater.: January 29, 2015