Sodium Oxide

NaO2
CAS 12034-12-7


Product Product Code Order or Specifications
(2N) 99% Sodium Oxide NA-OX-02 Contact American Elements
(3N) 99.9% Sodium Oxide NA-OX-03 Contact American Elements
(4N) 99.99% Sodium Oxide NA-OX-04 Contact American Elements
(5N) 99.999% Sodium Oxide NA-OX-05 Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
NaO2 12034-12-7 24883391 73971 MFCD00046201 N/A Disodium oxygen(-2) anion N/A [Na+].[Na+].[O-2] InChI=1S/2Na.
O/q2*+1;-2
KKCBUQHMOMHUOY-UHFFFAOYSA-N

PROPERTIES Compound Formula Mol. Wt. Appearance Melting Point Boiling Point Density

Exact Mass

Monoisotopic Mass Charge MSDS
NaO2 54.989 Yellow Crystalline Solid 1,132° C
(2,070° F)
1,950° C
(3,542° F)
2200 kg/m-3 62.9823 g/mol 61.974455 Da +1 Safety Data Sheet

Oxide IonSodium Oxide is a highly insoluble thermally stable Sodium source suitable for glass, optic and ceramic applications. Oxide compounds are not conductive to electricity. However,High Purity (99.999%) sodium Oxide (NaO2)Powder certain perovskite structured oxides are electronically conductive finding application in the cathode of solid oxide fuel cells and oxygen generation systems. They are compounds containing at least one oxygen anion and one metallic cation. They are typically insoluble in aqueous solutions (water) and extremely stable making them useful in ceramic structures as simple as producing clay bowls to advanced electronics and in light weight structural components in aerospace and electrochemical applications such as fuel cells in which they exhibit ionic conductivity. Metal oxide compounds are basicanhydrides and can therefore react with acids and with strong reducing agents in redox reactions. Sodium Oxide is also available in pellets, pieces, sputtering targets, tablets, and nanopowder (from American Elements' nanoscale production facilities). See Nanotechnology for more nanotechnology applications information. Sodium Oxide is generally immediately available in most volumes. Ultra high purity, high purity, submicron and nanopowder forms may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Sodium Bohr ModelSodium (Na) atomic and molecular weight, atomic number and elemental symbolSodium (atomic symbol: Na, atomic number: 11) is a Block D, Group 5, Period 4 element with na atomic weight of 22.989769. The number of electrons in each of Sodium's shells is [2, 8, 1] and its electron configuration is [Ne] 3s1.The sodium atom has a radius of 185.8 pm and a Van der Waals radius of 227 pm. Sodium was discovered and first isolated by Sir Humphrey Davy in 1807. In its elemental form, sodium has a silvery-white metallic appearance. It is the sixth most abundant element, making up 2.6 % of the earth's crust. Sodium does not occur in nature as a free element and must be extracted from its compounds (e.g., feldspars, sodalite, and rock salt). The name Sodium is thought to come from the Arabic word "suda," meaning "headache" (due to sodium carbonate's headache-alleviating properties), and its elemental symbol Na comes from "natrium," its Latin name. For more information on sodium, including properties, safety data, research, and American Elements' catalog of sodium products, visit the Sodium Information Center.


HEALTH, SAFETY & TRANSPORTATION INFORMATION
Danger
H271-H314
O,C
8-14-35
8-27-39-43-45
N/A
UN 3085 5.1/PG 1
Corrosion-Corrosive to metals Flame Over Circle-Oxidizing gases and liquids      

SODIUM OXIDE SYNONYMS
Disodium monoxide, Disodium oxide, Disodium oxygen(-2) anion, Disodium hydroxide

CUSTOMERS FOR SODIUM OXIDE HAVE ALSO LOOKED AT
Sodium Fluoride Sodium Chloride Sodium Oxide Sputtering Target Sodium Sulfate Sodium Oxide Powder
Sodium Nitrate Sodium Acetate Sodium 2 - Ethylhexanoate Sodium Tungstate Sodium Oxide
Sodium Oxide Nanopowder Sodium Oxide Pellets Sodium Cubes Gold(I) Sodium Cyanide Sodium Benzoate
Show Me MORE Forms of Sodium

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Sodium

  • F.E. López-Suárez, A. Bueno-López, K.I.B. Eguiluz, G.R. Salazar-Banda, Pt–Sn/C catalysts prepared by sodium borohydride reduction for alcohol oxidation in fuel cells: Effect of the precursor addition order, Journal of Power Sources, Volume 268, 5 December 2014
  • Zhijie Wu, Xikang Mao, Qin Zi, Rongrong Zhang, Tao Dou, Alex C.K. Yip, Mechanism and kinetics of sodium borohydride hydrolysis over crystalline nickel and nickel boride and amorphous nickel–boron nanoparticles, Journal of Power Sources, Volume 268, 5 December 2014
  • M.A. Deyab, Hydrogen generation by tin corrosion in lactic acid solution promoted by sodium perchlorate, Journal of Power Sources, Volume 268, 5 December 2014
  • Majid Mortazavi, Chao Wang, Junkai Deng, Vivek B. Shenoy, Nikhil V. Medhekar, Ab initio characterization of layered MoS2 as anode for sodium-ion batteries, Journal of Power Sources, Volume 268, 5 December 2014
  • Gaoxiao Zhang, Zhaoyin Wen, Xiangwei Wu, Jingchao Zhang, Guoqiang Ma, Jun Jin, Sol–gel synthesis of Mg2+ stabilized Na-ß?/ß-Al2O3 solid electrolyte for sodium anode battery, Journal of Alloys and Compounds, Volume 613, 15 November 2014
  • Siham Doubaji, Mario Valvo, Ismael Saadoune, Mohammed Dahbi, Kristina Edström, Synthesis and characterization of a new layered cathode material for sodium ion batteries, Journal of Power Sources, Volume 266, 15 November 2014
  • Kazuhiko Matsumoto, Takafumi Hosokawa, Toshiyuki Nohira, Rika Hagiwara, Atsushi Fukunaga, Koma Numata, Eiko Itani, Shoichiro Sakai, Koji Nitta, Shinji Inazawa, The Na[FSA]–[C2C1im][FSA] (C2C1im+:1-ethyl-3-methylimidazolium and FSA-:bis(fluorosulfonyl)amide) ionic liquid electrolytes for sodium secondary batteries, Journal of Power Sources, Volume 265, 1 November 2014
  • L.I. Bryukvina, E.V. Pestryakov, A.V. Kirpichnikov, E.F. Martynovich, Formation of color centers and light scattering structures by femtosecond laser pulses in sodium fluoride, Optics Communications, Volume 330, 1 November 2014
  • L.I. Bryukvina, E.V. Pestryakov, A.V. Kirpichnikov, E.F. Martynovich, Formation of color centers and light scattering structures by femtosecond laser pulses in sodium fluoride, Optics Communications, Volume 330, 1 November 2014
  • E.M. van der Merwe, C.L. Mathebula, L.C. Prinsloo, Characterization of the surface and physical properties of South African coal fly ash modified by sodium lauryl sulphate (SLS) for applications in PVC composites, Powder Technology, Volume 266, November 2014
  • J. Zavadil, Z.G. Ivanova, P. Kostka, M. Hamzaoui, M.T. Soltani, Photoluminescence study of Er-doped zinc–sodium–antimonite glasses, Journal of Alloys and Compounds, Volume 611, 25 October 2014
  • Xiaojing Cheng, Jiagang Wu, Ting Zheng, Xiaopeng Wang, Binyu Zhang, Dingquan Xiao, Jianguo Zhu, Xiangjian Wang, Xiaojie Lou, Rhombohedral–tetragonal phase coexistence and piezoelectric properties based on potassium–sodium niobate ternary system, Journal of Alloys and Compounds, Volume 610, 15 October 2014
  • Yanmei Liu, Xia Sun, Tao Wang, Qingqing Fang, Qingrong Lv, Mingzai Wu, Zhaoqi Sun, Gang He, Aixia Li, Study of sodium citrate dependent crystalline orientation and properties of Zn0.85Co0.05Mg0.10O films, Journal of Alloys and Compounds, Volume 610, 15 October 2014
  • Jiasong Zhong, Haijun Zhao, Chenglong Zhang, Xin Ma, Lang Pei, Xiaojuan Liang, Weidong Xiang, Sol–gel synthesis and optical properties of CuGaS2 quantum dots embedded in sodium borosilicate glass, Journal of Alloys and Compounds, Volume 610, 15 October 2014
  • Jee-Hoon Kim, Eui-Chol Shin, Dong-Chun Cho, Sooseok Kim, Sansudae Lim, Keedeok Yang, Jinhyung Beum, Jaekook Kim, Shu Yamaguchi, Jong-Sook Lee, Electrical characterization of polycrystalline sodium ß?-alumina: Revisited and resolved, Solid State Ionics, Volume 264, 15 October 2014
  • Tangyuan Li, Huiqing Fan, Changbai Long, Guangzhi Dong, Sheji Sun, Defect dipoles and electrical properties of magnesium B-site substituted sodium potassium niobates, Journal of Alloys and Compounds, Volume 609, 5 October 2014
  • Mathias Maes, Nele De Belie, Resistance of concrete and mortar against combined attack of chloride and sodium sulphate, Cement and Concrete Composites, Volume 53, October 2014
  • Yitong Wang, Xia Xin, Wenzhe Li, Chunyu Jia, Lin Wang, Jinglin Shen, Guiying Xu, Studies on the gel behavior and luminescence properties of biological surfactant sodium deoxycholate/rare-earth salts mixed systems, Journal of Colloid and Interface Science, Volume 431, 1 October 2014
  • Kundan Tayade, G. Krishna Chaitanya, Jasminder Singh, Narinder Singh, Sopan Ingle, Sanjay Attarde, Anil Kuwar, Fluorescence detection by thiourea based probe of physiologically important sodium ion, Journal of Luminescence, Volume 154, October 2014
  • Yoshiaki Matsuo, Koji Ueda, Pyrolytic carbon from graphite oxide as a negative electrode of sodium-ion battery, Journal of Power Sources, Volume 263, 1 October 2014