Sodium Oxide

CAS 12034-12-7

Product Product Code Order or Specifications
(2N) 99% Sodium Oxide NA-OX-02 Contact American Elements
(3N) 99.9% Sodium Oxide NA-OX-03 Contact American Elements
(4N) 99.99% Sodium Oxide NA-OX-04 Contact American Elements
(5N) 99.999% Sodium Oxide NA-OX-05 Contact American Elements

Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
NaO2 12034-12-7 24883391 73971 MFCD00046201 N/A Disodium oxygen(-2) anion N/A [Na+].[Na+].[O-2] InChI=1S/2Na.

PROPERTIES Compound Formula Mol. Wt. Appearance Melting Point Boiling Point Density

Exact Mass

Monoisotopic Mass Charge MSDS
NaO2 54.989 Yellow Crystalline Solid 1,132° C
(2,070° F)
1,950° C
(3,542° F)
2200 kg/m-3 62.9823 g/mol 61.974455 Da +1 Safety Data Sheet

Oxide IonSodium Oxide is a highly insoluble thermally stable Sodium source suitable for glass, optic and ceramic applications. Oxide compounds are not conductive to electricity. However,High Purity (99.999%) sodium Oxide (NaO2)Powder certain perovskite structured oxides are electronically conductive finding application in the cathode of solid oxide fuel cells and oxygen generation systems. They are compounds containing at least one oxygen anion and one metallic cation. They are typically insoluble in aqueous solutions (water) and extremely stable making them useful in ceramic structures as simple as producing clay bowls to advanced electronics and in light weight structural components in aerospace and electrochemical applications such as fuel cells in which they exhibit ionic conductivity. Metal oxide compounds are basicanhydrides and can therefore react with acids and with strong reducing agents in redox reactions. Sodium Oxide is also available in pellets, pieces, sputtering targets, tablets, and nanopowder (from American Elements' nanoscale production facilities). See Nanotechnology for more nanotechnology applications information. Sodium Oxide is generally immediately available in most volumes. Ultra high purity, high purity, submicron and nanopowder forms may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Sodium Bohr ModelSodium (Na) atomic and molecular weight, atomic number and elemental symbolSodium (atomic symbol: Na, atomic number: 11) is a Block D, Group 5, Period 4 element with na atomic weight of 22.989769. The number of electrons in each of Sodium's shells is [2, 8, 1] and its electron configuration is [Ne] 3s1.The sodium atom has a radius of 185.8 pm and a Van der Waals radius of 227 pm. Sodium was discovered and first isolated by Sir Humphrey Davy in 1807. In its elemental form, sodium has a silvery-white metallic appearance. It is the sixth most abundant element, making up 2.6 % of the earth's crust. Sodium does not occur in nature as a free element and must be extracted from its compounds (e.g., feldspars, sodalite, and rock salt). The name Sodium is thought to come from the Arabic word "suda," meaning "headache" (due to sodium carbonate's headache-alleviating properties), and its elemental symbol Na comes from "natrium," its Latin name. For more information on sodium, including properties, safety data, research, and American Elements' catalog of sodium products, visit the Sodium Information Center.

UN 3085 5.1/PG 1
Corrosion-Corrosive to metals Flame Over Circle-Oxidizing gases and liquids      

Disodium monoxide, Disodium oxide, Disodium oxygen(-2) anion, Disodium hydroxide

Sodium Fluoride Sodium Chloride Sodium Oxide Sputtering Target Sodium Sulfate Sodium Oxide Powder
Sodium Nitrate Sodium Acetate Sodium 2 - Ethylhexanoate Sodium Tungstate Sodium Oxide
Sodium Oxide Nanopowder Sodium Oxide Pellets Sodium Cubes Gold(I) Sodium Cyanide Sodium Benzoate
Show Me MORE Forms of Sodium

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.

Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages

Recent Research & Development for Sodium

  • L.Z. Ouyang, H. Zhong, Z.M. Li, Z.J. Cao, H. Wang, J.W. Liu, X.K. Zhu, M. Zhu, Low-cost method for sodium borohydride regeneration and the energy efficiency of its hydrolysis and regeneration process, Journal of Power Sources, Volume 269, 10 December 2014
  • Zichao Yan, Li Liu, Jinli Tan, Qian Zhou, Zhifeng Huang, Dongdong Xia, Hongbo Shu, Xiukang Yang, Xianyou Wang, One-pot synthesis of bicrystalline titanium dioxide spheres with a core–shell structure as anode materials for lithium and sodium ion batteries, Journal of Power Sources, Volume 269, 10 December 2014
  • Changsheng Ding, Toshiyuki Nohira, Rika Hagiwara, Kazuhiko Matsumoto, Yu Okamoto, Atsushi Fukunaga, Shoichiro Sakai, Koji Nitta, Shinji Inazawa, Na[FSA]-[C3C1pyrr][FSA] ionic liquids as electrolytes for sodium secondary batteries: Effects of Na ion concentration and operation temperature, Journal of Power Sources, Volume 269, 10 December 2014
  • Il Tae Kim, Sang-Ok Kim, Arumugam Manthiram, Effect of TiC addition on SnSb–C composite anodes for sodium-ion batteries, Journal of Power Sources, Volume 269, 10 December 2014
  • Keeyoung Jung, Solki Lee, Goun Kim, Chang-Soo Kim, Stress analyses for the glass joints of contemporary sodium sulfur batteries, Journal of Power Sources, Volume 269, 10 December 2014
  • F.E. López-Suárez, A. Bueno-López, K.I.B. Eguiluz, G.R. Salazar-Banda, Pt–Sn/C catalysts prepared by sodium borohydride reduction for alcohol oxidation in fuel cells: Effect of the precursor addition order, Journal of Power Sources, Volume 268, 5 December 2014
  • Zhijie Wu, Xikang Mao, Qin Zi, Rongrong Zhang, Tao Dou, Alex C.K. Yip, Mechanism and kinetics of sodium borohydride hydrolysis over crystalline nickel and nickel boride and amorphous nickel–boron nanoparticles, Journal of Power Sources, Volume 268, 5 December 2014
  • M.A. Deyab, Hydrogen generation by tin corrosion in lactic acid solution promoted by sodium perchlorate, Journal of Power Sources, Volume 268, 5 December 2014
  • Majid Mortazavi, Chao Wang, Junkai Deng, Vivek B. Shenoy, Nikhil V. Medhekar, Ab initio characterization of layered MoS2 as anode for sodium-ion batteries, Journal of Power Sources, Volume 268, 5 December 2014
  • Gaoxiao Zhang, Zhaoyin Wen, Xiangwei Wu, Jingchao Zhang, Guoqiang Ma, Jun Jin, Sol–gel synthesis of Mg2+ stabilized Na-ß?/ß-Al2O3 solid electrolyte for sodium anode battery, Journal of Alloys and Compounds, Volume 613, 15 November 2014
  • Tsuyoshi Honma, Atsushi Sato, Noriko Ito, Takuya Togashi, Kenji Shinozaki, Takayuki Komatsu, Crystallization behavior of sodium iron phosphate glass Na2 - xFe1 + 0.5xP2O7 for sodium ion batteries, Journal of Non-Crystalline Solids, Volume 404, 15 November 2014
  • Siham Doubaji, Mario Valvo, Ismael Saadoune, Mohammed Dahbi, Kristina Edström, Synthesis and characterization of a new layered cathode material for sodium ion batteries, Journal of Power Sources, Volume 266, 15 November 2014
  • Robin Jose, Tilesh Jayantilal Patel, Troy Allen Cather, Daniel Joseph Willhelm, Janusz Grebowicz, Haesook Han, Pradip Kumar Bhowmik, Lewis Sharpnack, Dena Mae Agra-Kooijman, Satyendra Kumar, Thermotropic mesomorphism in catanionic surfactants synthesized from quaternary ammonium surfactants and sodium dodecylbenzenesulfonate: Effect of chain length and symmetry, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 461, 5 November 2014
  • Monali Maiti, Aparna Roy, Sumita Roy, Effect of pH and amphiphile concentration on the gel-emulsion of sodium salt of 2-dodecylpyridine-5-boronic acid: Entrapment and release of vitamin B12, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 461, 5 November 2014
  • Tingting Zhang, Luc J. Vandeperre, Christopher R. Cheeseman, Formation of magnesium silicate hydrate (M-S-H) cement pastes using sodium hexametaphosphate, Cement and Concrete Research, Volume 65, November 2014
  • Rackel San Nicolas, Susan A. Bernal, Ruby Mejía de Gutiérrez, Jannie S.J. van Deventer, John L. Provis, Distinctive microstructural features of aged sodium silicate-activated slag concretes, Cement and Concrete Research, Volume 65, November 2014
  • Haoyang Wu, Mingli Qin, Aimin Chu, Qi Wan, Zhiqin Cao, Ye Liu, Xuanhui Qu, Alex A. Volinsky, AlN powder synthesis by sodium fluoride-assisted carbothermal combustion, Ceramics International, Volume 40, Issue 9, Part A, November 2014
  • Keteng Cao, Zhongyi Jiang, Jing Zhao, Cuihong Zhao, Chengyun Gao, Fusheng Pan, Baoyi Wang, Xingzhong Cao, Jing Yang, Enhanced water permeation through sodium alginate membranes by incorporating graphene oxides, Journal of Membrane Science, Volume 469, 1 November 2014
  • Kazuhiko Matsumoto, Takafumi Hosokawa, Toshiyuki Nohira, Rika Hagiwara, Atsushi Fukunaga, Koma Numata, Eiko Itani, Shoichiro Sakai, Koji Nitta, Shinji Inazawa, The Na[FSA]–[C2C1im][FSA] (C2C1im+:1-ethyl-3-methylimidazolium and FSA-:bis(fluorosulfonyl)amide) ionic liquid electrolytes for sodium secondary batteries, Journal of Power Sources, Volume 265, 1 November 2014
  • Guangqiang Li, Danlu Jiang, Hui Wang, Xinzheng Lan, Honghai Zhong, Yang Jiang, Glucose-assisted synthesis of Na3V2(PO4)3/C composite as an electrode material for high-performance sodium-ion batteries, Journal of Power Sources, Volume 265, 1 November 2014