Skip to Page Content

Nickel Cobalt Chromium Nanoparticles

Ni Co Cr Nanoparticles/Nanopowder

Product Product Code Request Quote
(2N) 99% Nickel Cobalt Chromium Nanoparticles NICOCR-M-02-NP Request Quote
(3N) 99.9% Nickel Cobalt Chromium Nanoparticles NICOCR-M-03-NP Request Quote
(4N) 99.99% Nickel Cobalt Chromium Nanoparticles NICOCR-M-04-NP Request Quote
(5N) 99.999%Nickel Cobalt Chromium Nanoparticles NICOCR-M-05-NP Request Quote

High Purity, D50 = +10 nanometer (nm) by SEMNickel Cobalt Chromium (NiCoCr) Nanoparticles, nanodots or nanopowder are spherical or faceted high surface area metal particles. Nanoscale Tin Particles are typically 10-20 nanometers (nm) with specific surface area (SSA) in the 30 - 60 m 2 /g range and also available in with an average particle size of 80 nm range with a specific surface area of approximately 12 m 2 /g. Nano Tin Particles are also available in Ultra high purity and high purity and coated and dispersed forms. They are also available as a nanofluid through the AE Nanofluid production group. Nanofluids are generally defined as suspended nanoparticles in solution either using surfactant or surface charge technology. Nanofluid dispersion and coating selection technical guidance is also available. Other nanostructures include nanorods, nanowhiskers, nanohorns, nanopyramids and other nanocomposites. Surface functionalized nanoparticles allow for the particles to be preferentially adsorbed at the surface interface using chemically bound polymers.

Nickel (Ni) atomic and molecular weight, atomic number and elemental symbolNickel (atomic symbol: Ni, atomic number: 28) is a Block D, Group 4, Period 4 element with an atomic weight of 58.6934. Nickel Bohr ModelThe number of electrons in each of nickel's shells is [2, 8, 16, 2] and its electron configuration is [Ar]3d8 4s2. Nickel was first discovered by Alex Constedt in 1751. The nickel atom has a radius of 124 pm and a Van der Waals radius of 184 pm. In its elemental form, nickel has a lustrous metallic silver appearance. Elemental Nickel Nickel is a hard and ductile transition metal that is considered corrosion-resistant because of its slow rate of oxidation. It is one of four elements that are ferromagnetic and is used in the production of various type of magnets for commercial use. Nickel is sometimes found free in nature but is more commonly found in ores. The bulk of mined nickel comes from laterite and magmatic sulfide ores. The name originates from the German word kupfernickel, which means "false copper" from the illusory copper color of the ore. For more information on nickel, including properties, safety data, research, and American Elements' catalog of nickel products, visit the Nickel element page.


Cobalt (Co) atomic and molecular weight, atomic number and elemental symbolCobalt (atomic symbol: Co, atomic number: 27) is a Block D, Group 9, Period 4 element with an atomic weight of 58.933195. Cobalt Bohr Model The number of electrons in each of cobalt's shells is 2, 8, 15, 2 and its electron configuration is [Ar] 3d7 4s2The cobalt atom has a radius of 125 pm and a Van der Waals radius of 192 pm. Cobalt was first discovered by George Brandt in 1732. In its elemental form, cobalt has a lustrous gray appearance. Cobalt is found in cobaltite, erythrite, glaucodot and skutterudite ores. Elemental Cobalt Cobalt produces brilliant blue pigments which have been used since ancient times to color paint and glass. Cobalt is a ferromagnetic metal and is used primarily in the production of magnetic and high-strength superalloys. Co-60, a commercially important radioisotope, is useful as a radioactive tracer and gamma ray source. The origin of the word Cobalt comes from the German word "Kobalt" or "Kobold," which translates as "goblin," "elf" or "evil spirit." For more information on cobalt, including properties, safety data, research, and American Elements' catalog of cobalt products, visit the Cobalt element page.


Chromium (Cr) atomic and molecular weight, atomic number and elemental symbolChromium (atomic symbol: Cr, atomic number: 24) is a Block D, Group 6, Period 4 element with an atomic weight of 51.9961. Chromium Bohr ModelThe number of electrons in each of Chromium's shells is 2, 8, 13, 1 and its electron configuration is [Ar] 3d5 4s1. Chromium was first discovered by Louis Nicolas Vauquelin in 1797. It was first isolated in 1798, also by Louis Nicolas Vauquelin. The chromium atom has a radius of 128 pm and a Van der Waals radius of 189 pm. In its elemental form, chromium has a lustrous steel-gray appearance. Elemental ChromiumChromium is the hardest metal element in the periodic table and the only element that exhibits antiferromagnetic ordering at room temperature, above which it tranforms into a paramagnetic solid. The most common source of chromium is chromite ore (FeCr2O4). Due to its various colorful compounds, Chromium was named after the Greek word 'chroma' meaning color. For more information on chromium, including properties, safety data, research, and American Elements' catalog of chromium products, visit the Chromium element page.



CUSTOMERS FOR NICKEL COBALT CHROMIUM NANOPARTICLES HAVE ALSO LOOKED AT
Nickel Copper Iron Alloy Nickel Foil Nickel Nanoparticles Nickel Molybdenum Alloy Nickel Pellets
Nickel Oxide Pellets Nickel Powder Nickel Oxide Nickel Sputtering Target Nickel Acetylacetonate
Nickel Sulfate Nickel Metal Nickel Chloride Nickel Acetate Nickel Rod
Show Me MORE Forms of Nickel

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Nickel

  • Blocking and bridging ligands direct the structure and magnetic properties of dimers of pentacoordinate nickel(ii). López-Banet L, Santana MD, García G, Pérez J, García L, Lezama L, da Silva I. Dalton Trans. 2015 Mar 13.
  • Copper and nickel partitioning with nanoscale goethite under variable aquatic conditions. Danner KM, Hammerschmidt CR, Costello DM, Burton GA Jr. Environ Toxicol Chem. 2015 Mar 11.
  • Genetic characterization, nickel tolerance, biosorption, kinetics, and uptake mechanism of a bacterium isolated from electroplating industrial effluent. Nagarajan N, Gunasekaran P, Rajendran P. Can J Microbiol. 2015 Jan 23:1-10.
  • A sustainable and simple catalytic system for direct alkynylation of C(sp2)-H bonds with low nickel loadings. Liu YJ, Liu YH, Yan SY, Shi BF. Chem Commun (Camb). 2015 Mar 12.
  • Cyclic Fatigue Resistance of 3 Different Nickel-Titanium Reciprocating Instruments in Artificial Canals. Higuera O, Plotino G, Tocci L, Carrillo G, Gambarini G, Jaramillo DE. J Endod. 2015 Mar 11.
  • Organometallic Chemistry. Catalysis by nickel in its high oxidation state. Riordan CG. Science. 2015 Mar 13
  • Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films. Sun K, Saadi FH, Lichterman MF, Hale WG, Wang HP, Zhou X, Plymale NT, Omelchenko ST, He JH, Papadantonakis KM, Brunschwig BS, Lewis NS. Proc Natl Acad Sci U S A. 2015 Mar 11.
  • Histidine promotes the loading of nickel and zinc, but not of cadmium, into the xylem in Noccaea caerulescens. Kozhevnikova AD, Seregin IV, Verweij R, Schat H. Plant Signal Behav. 2014 Sep
  • Nickel-Catalyzed Suzuki-Miyaura Cross-Coupling in a Green Alcohol Solvent for an Undergraduate Organic Chemistry Laboratory. Hie L, Chang JJ, Garg NK. J Chem Educ. 2015 Mar 10
  • Leaching of copper and nickel in soil-water systems contaminated by bauxite residue (red mud) from Ajka, Hungary: the importance of soil organic matter. Lockwood CL, Stewart DI, Mortimer RJ, Mayes WM, Jarvis AP, Gruiz K, Burke IT. Environ Sci Pollut Res Int. 2015 Mar 12.
  • Inducing cells to disperse nickel nanowires via integrin-mediated responses. Sharma A, Orlowski GM, Zhu Y, Shore D, Kim SY, DiVito MD, Hubel A, Stadler BJ. Nanotechnology. 2015 Mar 27
  • Reactions of phenylacetylene with nickel POCOP-pincer hydride complexes resulting in different outcomes from their palladium analogues. Wilson GL, Abraha M, Krause JA, Guan H. Dalton Trans. 2015 Mar 16.
  • Preparation of magnetic core-shell iron oxide@silica@nickel-ethylene glycol microspheres for highly efficient sorption of uranium(vi). Tan L, Zhang X, Liu Q, Wang J, Sun Y, Jing X, Liu J, Song D, Liu L. Dalton Trans. 2015 Mar 16.
  • Sequential recovery of copper and nickel from wastewater without net energy input. Cai WF, Fang XW, Xu MX, Liu XH, Wang YH. Water Sci Technol. 2015 Mar
  • Electronic properties of nickel-doped TiO2 anatase. Jensen S, Kilin DS. J Phys Condens Matter. 2015 Mar 13
  • Nickel Transfer by Fingers. Isnardo D, Vidal J, Panyella D, Vilaplana J. Actas Dermosifiliogr. 2015 Mar 11.
  • Design, synthesis, and carbon-heteroatom coupling reactions of organometallic nickel(IV) complexes. Camasso NM, Sanford MS. Science. 2015 Mar 13
  • A high performance nonenzymatic electrochemical glucose sensor based on polyvinylpyrrolidone-graphene nanosheets-nickel nanoparticles-chitosan nanocomposite. Liu Z, Guo Y, Dong C. Talanta. 2015 May
  • Metallic Nickel Nitride Nanosheets Realizing Enhanced Electrochemical Water Oxidation. Xu K, Chen P, Li X, Tong Y, Ding H, Wu X, Chu W, Peng Z, Wu C, Xie Y. J Am Chem Soc. 2015 Mar 11.
  • Phyto-extraction of Nickel by Linum usitatissimum in Association with Glomus intraradices. Amna, Masood S, Syed JH, Munis MF, Chaudhary HJ. Int J Phytoremediation. 2015 Mar 12:0.

Recent Research & Development for Cobalt

  • Cobalt-catalyzed ammonia borane dehydrocoupling and transfer hydrogenation under aerobic conditions. Pagano JK, Stelmach JP, Waterman R. Dalton Trans. 2015 Mar 5.
  • Influence of Bi3+-doping on the magnetic and Mössbauer properties of spinel cobalt ferrite. Gore SK, Mane RS, Naushad M, Jadhav SS, Zate MK, Alothman ZA, Hui BK. Dalton Trans. 2015 Mar 6.
  • Investigation on cobalt-oxide nanoparticles cyto-genotoxicity and inflammatory response in two types of respiratory cells. Cavallo D, Ciervo A, Fresegna AM, Maiello R, Tassone P, Buresti G, Casciardi S, Iavicoli S, Ursini CL. J Appl Toxicol. 2015 Mar 13.
  • Controllable fabrication and magnetic properties of double-shell cobalt oxide hollow particles. Zhang D, Zhu J, Zhang N, Liu T, Chen L, Liu X, Ma R, Zhang H, Qiu G. Sci Rep. 2015 Mar 4
  • A Three-Dimensional Complex with a One-Dimensional Cobalt-Hydroxyl Chain Based on Planar Nonanuclear Clusters Showing Spin-Canted Antiferromagnetism. Li B, Li Z, Wei RJ, Yu F, Chen X, Xie YP, Zhang TL, Tao J. Inorg Chem. 2015 Mar 11.
  • Cobalt-catalysed site-selective intra- and intermolecular dehydrogenative amination of unactivated sp(3) carbons. Wu X, Yang K, Zhao Y, Sun H, Li G, Ge H. Nat Commun. 2015 Mar 10
  • Validation and analysis of dose distributions in a new and entirely redesigned cobalt-60 stereotactic radiosurgery units. Nakazawa H, Uchiyama Y, Komori M. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2015 Feb
  • Exposing the intermolecular nature of the second relaxation pathway in a mononuclear cobalt(ii) single-molecule magnet with positive anisotropy. Habib F, Korobkov I, Murugesu M. Dalton Trans. 2015 Mar 5.
  • In situ Formation of Cobalt Oxide Nanocubanes as Efficient Oxygen Evolution Catalysts. Hutchings GS, Zhang Y, Li J, Yonemoto BT, Zhou X, Zhu K, Jiao F. J Am Chem Soc. 2015 Mar 11.
  • N-doped graphitic layer encased cobalt nanoparticles as efficient oxygen reduction catalysts in alkaline media. Han C, Bo X, Zhang Y, Li M, Nsabimana A, Guo L. Nanoscale. 2015 Mar 9.
  • Dosimetric feasibility of magnetic resonance imaging-guided tri-cobalt 60 preoperative intensity modulated radiation therapy for soft tissue sarcomas of the extremity. Kishan AU, Cao M, Mikaeilian AG, Low DA, Kupelian PA, Steinberg ML, Kamrava M. Pract Radiat Oncol. 2015 Mar 3.
  • Air- and Water-Resistant Noble Metal Coated Ferromagnetic Cobalt Nanorods. Lentijo-Mozo S, Tan RP, Garcia-Marcelot C, Altantzis T, Fazzini PF, Hungria T, Cormary B, Gallagher JR, Miller JT, Martinez H, Schrittwieser S, Schotter J, Respaud M, Bals S, Tendeloo GV, Gatel C, Soulantica K. ACS Nano. 2015 Mar 9.
  • Cytogenetic characterization of low-dose hyper-radiosensitivity in Cobalt-60 irradiated human lymphoblastoid cells. Joshi GS, Joiner MC, Tucker JD. Mutat Res. 2014 Dec
  • Electronic structure at transition metal phthalocyanine-transition metal oxide interfaces: Cobalt phthalocyanine on epitaxial MnO films. Glaser M, Peisert H, Adler H, Aygül U, Ivanovic M, Nagel P, Merz M, Schuppler S, Chassé T. J Chem Phys. 2015 Mar 14
  • Toxicology of wear particles of cobalt-chromium alloy metal-on-metal hip implants part II: Importance of physicochemical properties and dose in animal and in vitro studies as a basis for risk assessment. Madl AK, Kovochich M, Liong M, Finley BL, Paustenbach DJ, Oberdörster G. Nanomedicine. 2015 Feb 28.
  • High-performance hybrid oxide catalyst of manganese and cobalt for low-pressure methanol synthesis. Li CS, Melaet G, Ralston WT, An K, Brooks C, Ye Y, Liu YS, Zhu J, Guo J, Alayoglu S, Somorjai GA. Nat Commun. 2015 Mar 10
  • In situ generation of hydroxyl radical by cobalt oxide supported porous carbon enhance removal of refractory organics in tannery dyeing wastewater. Karthikeyan S, Boopathy R, Sekaran G. J Colloid Interface Sci. 2015 Feb 4
  • Fast discharge process of layered cobalt oxides due to high Na(+) diffusion. Shibata T, Fukuzumi Y, Kobayashi W, Moritomo Y. Sci Rep. 2015 Mar 11
  • Reaction Mechanism of Cobalt-Substituted Homoprotocatechuate 2,3-Dioxygenase -A QM/MM Study. Cao L, Dong G, Lai W. J Phys Chem B. 2015 Mar 9.
  • Toxicology of wear particles of cobalt-chromium alloy metal-on-metal hip implants Part I: Physicochemical properties in patient and simulator studies. Madl AK, Liong M, Kovochich M, Finley BL, Paustenbach DJ, Oberdörster G. Nanomedicine. 2015 Mar 3.

Recent Research & Development for Chromium

  • Toxicology of wear particles of cobalt-chromium alloy metal-on-metal hip implants Part I: Physicochemical properties in patient and simulator studies. Madl AK, Liong M, Kovochich M, Finley BL, Paustenbach DJ, Oberdörster G. Nanomedicine. 2015 Mar 3.
  • Erratum to: Use of a whole-cell bioreporter, Acinetobacter baylyi, to estimate the genotoxicity and bioavailability of chromium(VI)-contaminated soils. Jiang B, Zhu D, Song Y, Zhang D, Liu Z, Zhang X, Huang WE, Li G. Biotechnol Lett. 2015 Mar 1.
  • Hexavalent chromium reduction and energy recovery by using dual-chambered microbial fuel cell. Gangadharan P, Nambi IM. Water Sci Technol. 2015
  • Magnetic moments of chromium-doped gold clusters: the anderson impurity model in finite systems. Hirsch K, Zamudio-Bayer V, Langenberg A, Niemeyer M, Langbehn B, Möller T, Terasaki A, Issendorff BV, Lau JT. Phys Rev Lett. 2015 Feb 27
  • Simultaneous analysis of Cr(III), Cr(VI) and chromium picolinate in foods using capillary electrophoresis-inductively coupled plasma mass spectrometry. Chen Y, Chen J, Xi Z, Yang G, Wu Z, Li J, Fu F. Electrophoresis. 2015 Mar 9.
  • Gibberellic acid in combination with pressmud enhances the growth of sunflower and stabilizes chromium(VI)-contaminated soil. Saleem M, Asghar HN, Khan MY, Zahir ZA. Environ Sci Pollut Res Int. 2015 Mar 7.
  • Fulvic acid mediates chromium (Cr) tolerance in wheat (Triticum aestivum L.) through lowering of Cr uptake and improved antioxidant defense system. Ali S, Bharwana SA, Rizwan M, Farid M, Kanwal S, Ali Q, Ibrahim M, Gill RA, Khan MD. Environ Sci Pollut Res Int. 2015 Mar 7.
  • Removal of hexavalent chromium from aqueous solutions using micro zero-valent iron supported by bentonite layer. Daoud W, Ebadi T, Fahimifar A. Water Sci Technol. 2015 Mar
  • Chromium translocation, concentration and its phytotoxic impacts in in vivo grown seedlings of Sesbania sesban L. Merrill. Mohanty M, Pradhan C, Patra HK. Acta Biol Hung. 2015 Mar
  • Lithium, Vanadium and Chromium Uptake Ability of Brassica juncea from Lithium Mine Tailings. Elektorowicz M, Keropian Z. Int J Phytoremediation. 2015
  • Alleviation of chromium toxicity by glycinebetaine is related to elevated antioxidant enzymes and suppressed chromium uptake and oxidative stress in wheat (Triticum aestivum L.). Ali S, Chaudhary A, Rizwan M, Anwar HT, Adrees M, Farid M, Irshad MK, Hayat T, Anjum SA. Environ Sci Pollut Res Int. 2015 Mar 11.
  • Crystal structure of bis-[trans-(ethane-1,2-di-amine-k(2) N,N')bis-(thio-cyanato-kN)chromium(III)] tetra-chlorido-zincate from synchrotron data. Moon D, Choi JH. Acta Crystallogr E Crystallogr Commun. 2015 Jan 1
  • Direct access to macroporous chromium nitride and chromium titanium nitride with inverse opal structure. Zhao W, DiSalvo FJ. Chem Commun (Camb). 2015 Mar 5
  • Chromium content in the human hip joint tissues. Brodziak-Dopiera?a B, Kwapuli?ski J, Sobczyk K, Wiechu?a D. Biomed Environ Sci. 2015 Feb
  • The modification of ferroelectric LiNbO3(0001) surfaces using chromium oxide thin films. Herdiech MW, Zhu X, Morales-Acosta MD, Walker FJ, Altman EI. Phys Chem Chem Phys. 2015 Mar 13.
  • [Determination of hexavalent chromium in atmospheric particles PM2.5 and PM10 by ion chromatography with inductively coupled plasma mass spectrometry]. Dao X, Lu Y, Teng E, Zhang L, Wang C, Li L. Se Pu. 2014 Sep