Antimony Phosphide

High Purity SbP
CAS 53120-23-3


Product Product Code Order or Specifications
(5N) 99.999% Antimony Phosphide Powder SB-P-05-P Contact American Elements
(5N) 99.999% Antimony Phosphide Ingot SB-P-05-I Contact American Elements
(5N) 99.999% Antimony Phosphide Chunk SB-P-05-CK Contact American Elements
(5N) 99.999% Antimony Phosphide Lump SB-P-05-L Contact American Elements
(5N) 99.999% Antimony Phosphide Sputtering Target SB-P-05-ST Contact American Elements
(5N) 99.999% Antimony Phosphide Wafer SB-P-05-WSX Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
SbP 53120-23-3 29298791 117654 N/A 247-316-7 stibanylidynephosphane N/A P#[Sb] InChI=1S/P.Sb RJAVVKVGAZUUIE-UHFFFAOYSA-N

PROPERTIES Compound Formula Mol. Wt. Appearance Density

Exact Mass

Monoisotopic Mass Charge MSDS
PSb 152.73 N/A N/A 151.87758 151.87758 0 Safety Data Sheet

Phosphide IonAntimony Phosphide is a semiconductor used in high power, high frequency applications and in laser diodes. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Antimony (Sb) atomic and molecular weight, atomic number and elemental symbolAntimony (atomic symbol: As, atomic number: 51) is a Block P, Group 15, Period 5 element with an atomic radius of 121.760. Antimony Bohr Model The number of electrons in each of antimony's shells is 2, 8, 18, 18, 5 and its electron configuration is [Kr] 4d10 5s2 5p3. The antimony atom has a radius of 140 pm and a Van der Waals radius of 206 pm. Antimony was discovered around 3000 BC and first isolated by Vannoccio Biringuccio in 1540 AD. In its elemental form, antimony has a silvery lustrous gray appearance.Elemental Antimony The most common source of antimony is the sulfide mineral known as stibnite (Sb2S3), although it sometimes occurs natively as well. Antimony has numerous applications, most commonly in flame-retardant materials; it also increases the hardness and strength of lead when combined in an alloy and is frequently employed as a dopant in semiconductor materials. Its name is derived from the Greek words anti and monos, meaning a metal not found by itself. For more information on antimony, including properties, safety data, research, and American Elements' catalog of antimony products, visit the Antimony Information Center.

Phosphorus(P) atomic and molecular weight, atomic number and elemental symbolPhosphorus Bohr ModelPhosphorus (atomic symbol: P, atomic number: 15) is a Block P, Group 15, Period 3 element. The number of electrons in each of Phosphorus's shells is 2, 8, 5 and its electronic configuration is [Ne] 3s2 3p3. The phosphorus atom has a radius of 110.5.pm and its Van der Waals radius is 180.pm. Phosphorus is a highly-reactive non-metallic element (sometimes considered a metalloid) with two primary allotropes, white phosphorus and red phosphorus; its black flaky appearance is similar to graphitic carbon. Compound forms of phosphorus include phosphates and phosphides. Phosphorous was first recognized as an element by Hennig Brand in 1669; its name (phosphorus mirabilis, or "bearer of light") was inspired from the brilliant glow emitted by its distillation. For more information on phosphorus, including properties, safety data, research, and American Elements' catalog of phosphorus products, visit the Phosphorus Information Center.


HEALTH, SAFETY & TRANSPORTATION INFORMATION
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A        

CUSTOMERS FOR ANTIMONY PHOSPHIDE HAVE ALSO LOOKED AT
Show Me MORE Forms of Antimony

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Antimony

  • Investigation of strontium and uranium sorption onto zirconium-antimony oxide/polyacrylonitrile (Zr-Sb oxide/PAN) composite using experimental design. Cakir P, Inan S, Altas Y. J Hazard Mater. 2014.
  • Antimony-Doped Tin Oxide Nanorods as a Transparent Conducting Electrode for Enhancing Photoelectrochemical Oxidation of Water by Hematite. Sun Y, Chemelewski WD, Berglund SP, Li C, He H, Shi G, Mullins CB. ACS Appl Mater Interfaces. 2014.
  • Bulk antimony sulfide with excellent cycle stability as next-generation anode for lithium-ion batteries. Yu DY, Hoster HE, Batabyal SK. Sci Rep. 2014.
  • SBML and CellML translation in Antimony and JSim. Smith LP, Butterworth E, Bassingthwaighte JB, Sauro HM. Bioinformatics. 2014.
  • Effects of antimony and arsenic on antioxidant enzyme activities of two steppic plant species in an old antimony mining area. Benhamdi A, Bentellis A, Rached O, Du Laing G, Mechakra A. Biol Trace Elem Res. 2014.
  • A novel marker, ARM58, confers antimony resistance to Leishmania spp. Nühs A, Schäfer C, Zander D, Trübe L, Tejera Nevado P, Schmidt S, Arevalo J, Adaui V, Maes L, Dujardin JC, Clos J. Int J Parasitol Drugs Drug Resist.
  • Efficient removal of trace antimony(III) through adsorption by hematite modified magnetic nanoparticles. Shan C, Ma Z, Tong M. J Hazard Mater. 2014
  • Second order non-linear optical activity of arsenic and antimony dithiolene complexes. Mitra J, Pal K, Sarkar S. Dalton Trans.
  • Antimony uptake, translocation and speciation in rice plants exposed to antimonite and antimonate. Ren JH, Ma LQ, Sun HJ, Cai F, Luo J. Sci Total Environ. 2014 Mar.
  • Antimony uptake, efflux and speciation in arsenic hyperaccumulator Pteris vittata. Tisarum R, Lessl JT, Dong X, de Oliveira LM, Rathinasabapathi B, Ma LQ. Environ Pollut. 2014.
  • Surface complexation modeling and spectroscopic evidence of antimony adsorption on iron-oxide-rich red earth soils. Vithanage M, Rajapaksha AU, Dou X, Bolan NS, Yang JE, Ok YS. J Colloid Interface Sci. 2013 Sep.
  • Synthesis and characterisation of nano-pore antimony imprinted polymer and its use in the extraction and determination of antimony in water and fruit juice samples. Shakerian F, Dadfarnia S, Haji Shabani AM, Nili Ahmad Abadi M. Food Chem. 2014 Feb.
  • Migration of antimony from PET containers into regulated EU food simulants. Sánchez-Martínez M, Pérez-Corona T, Cámara C, Madrid Y. Food Chem. 2013 Nov.
  • Removal of antimony (Sb(V)) from Sb mine drainage: Biological sulfate reduction and sulfide oxidation-precipitation. Wang H, Chen F, Mu S, Zhang D, Pan X, Lee DJ, Chang JS. Bioresour Technol. 2013 Oct.
  • Antimony migration trends from a small arms firing range compared to lead, copper, and zinc. Martin WA, Lee LS, Schwab P. Sci Total Environ. 2013 Oct.
  • The availability and mobility of arsenic and antimony in an acid sulfate soil pasture system. Tighe M, Lockwood PV, Ashley PM, Murison RD, Wilson SC. Sci Total Environ. 2013 Oct.
  • Antimony mediated control of misfit dislocation and strain at the highly lattice mismatched GaSb/GaAs interface. Wang Y, Ruterana P, Chen J, Kret S, Ei Kazzi S, Genevois C, Desplanque L, Wallart X. ACS Appl Mater Interfaces. 2013 Sep.
  • Solvothermal synthesis of antimony sulfide dendrites for electrochemical detection of dopamine. Tao W, Wang J, Wu D, Chang J, Wang F, Gao Z, Xu F, Jiang K. Dalton Trans. 2013 Aug.
  • Behavior of Antimony(V) during the Transformation of Ferrihydrite and Its Environmental Implications. Mitsunobu S, Muramatsu C, Watanabe K, Sakata M. Environ Sci Technol. 2013 Sep.
  • Second order non-linear optical activity of arsenic and antimony dithiolene complexes. Mitra J, Pal K, Sarkar S. Dalton Trans.

Recent Research & Development for Phosphides

  • Peapod-Like Composite with Nickel Phosphide Nanoparticles Encapsulated in Carbon Fibers as Enhanced Anode for Li-Ion Batteries. Zhang H, Feng Y, Zhang Y, Fang L, Li W, Liu Q, Wu K, Wang Y. ChemSusChem. 2014.
  • Triamidoamine-Uranium(IV)-Stabilized Terminal Parent Phosphide and Phosphinidene Complexes. Gardner BM, Balázs G, Scheer M, Tuna F, McInnes EJ, McMaster J, Lewis W, Blake AJ, Liddle ST. Angew Chem Int Ed Engl. 2014.
  • The Stannylphosphide Anion Reagent Sodium Bis(triphenylstannyl) Phosphide: Synthesis, Structural Characterization, and Reactions with Indium, Tin, and Gold Electrophiles. Cummins CC, Huang C, Miller TJ, Reintinger MW, Stauber JM, Tannou I, Tofan D, Toubaei A, Velian A, Wu G. Inorg Chem. 2014.
  • Hexanuclear Gold(I) Phosphide Complexes as Platforms for Multiple Redox-Active Ferrocenyl Units. Lee TK, Cheng EC, Zhu N, Yam VW. Chemistry. 2013 Dec.
  • Easily-prepared dinickel phosphide (Ni2P) nanoparticles as an efficient and robust electrocatalyst for hydrogen evolution. Feng L, Vrubel H, Bensimon M, Hu X. Phys Chem Chem Phys. 2014 Feb.
  • Abdominal imaging in zinc phosphide poisoning. Hassanian-Moghaddam H, Shahnazi M, Zamani N, Bahrami-Motlagh H. Emerg Radiol 2014.
  • Gas phase catalytic hydrodechlorination of chlorobenzene over cobalt phosphide catalysts with different P contents. J Hazard Mater. 2013 | first author:Cecilia JA
  • Successful treatment of cardiogenic shock with an intra-aortic balloon pump following aluminium phosphide poisoning. Mehrpour O, Amouzeshi A, Dadpour B, Oghabian Z, Zamani N, Amini S, Hoffman RS. Arh Hig Rada Toksikol. 2014 Jan.
  • Aluminium phosphide-induced leukopenia. Ntelios D, Mandros C, Potolidis E, Fanourgiakis P. BMJ Case Rep. 2013 Oct.
  • 25th anniversary article: exploring nanoscaled matter from speciation to phase diagrams: metal phosphide nanoparticles as a case of study. Carenco S, Portehault D, Boissière C, Mézailles N, Sanchez C. Adv Mater. 2014 Jan.
  • Pulse-reverse electrodeposition of transparent nickel phosphide film with porous nanospheres as a cost-effective counter electrode for dye-sensitized solar cells. Wu MS, Wu JF. Chem Commun (Camb). 2013 Oct.
  • 25th Anniversary Article: Exploring Nanoscaled Matter from Speciation to Phase Diagrams: Metal Phosphide Nanoparticles as a Case of Study. Carenco S, Portehault D, Boissière C, Mézailles N, Sanchez C. Adv Mater. 2013 Dec.
  • A Common Misconception in the Management of Aluminium Phosphide Poisoning. Arh Hig Rada Toksikol. 2013 | first author:Marashi SM.
  • Pulse-reverse electrodeposition of transparent nickel phosphide film with porous nanospheres as a cost-effective counter electrode for dye-sensitized solar cells. Wu MS, Wu JF. Chem Commun (Camb). 2013
  • Solution-Processed Zinc Phosphide (α-Zn(3)P(2)) Colloidal Semiconducting Nanocrystals for Thin Film Photovoltaic Applications. ACS Nano. 2013 create date:2013/08/21 | first author:Luber EJ
  • From a Zwitterionic Phosphasilene to Base Stabilized Silyliumylidene-Phosphide and Bis(silylene) Complexes. Breit NC, Szilvási T, Suzuki T, Gallego D, Inoue S. J Am Chem Soc. 2013 Nov.
  • Structural transitions at the nanoscale: the example of palladium phosphides synthesized from white phosphorus. Carenco S, Hu Y, Florea I, Ersen O, Boissière C, Sanchez C, Mézailles N. Dalton Trans. 2013 Aug.
  • From a Zwitterionic Phosphasilene to Base Stabilized Silyliumylidene-Phosphide and Bis(silylene) Complexes. Breit NC, Szilvási T, Suzuki T, Gallego D, Inoue S. J Am Chem Soc. 2013 Oct.
  • Ingestion of gallium phosphide" nanowires has no adverse effect on Drosophila tissue function. Adolfsson K, Schneider M, Hammarin G, Häcker U, Prinz CN. Nanotechnology.
  • Is the Use of Cardioactive Steroids Appropriate in Managing Aluminium Phosphide Poisoning-Induced Heart Failure? Arh Hig Rada Toksikol. 2013 create date:2013/10/03 | first author:Marashi SM