Skip to Page Content

Zinc Indium Telluride Powder

ZnIn2Te4


Product Product Code Request Quote
(2N) 99% Zinc Indium Telluride Powder      ZN-INTE-02-P Request Quote
(3N) 99.9% Zinc Indium Telluride Powder ZN-INTE-03-P Request Quote
(4N) 99.99% Zinc Indium Telluride Powder ZN-INTE-04-P Request Quote
(5N) 99.999% Zinc Indium Telluride Powder ZN-INTE-05-P Request Quote

PROPERTIES Compound Formula Mol. Wt. Appearance Melting
Point
Boiling
Point
Density Exact Mass Monoisotopic Mass Charge MSDS
ZnIn2Te4 805.45 Crystalline 802 °C N/A 5.83 g/cm3 N/A N/A N/A Safety Data Sheet

Zinc Indium Telluride Powder is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Zinc (Zn) atomic and molecular weight, atomic number and elemental symbolZinc (atomic symbol: Zn, atomic number: 30) is a Block D, Group 12, Period 4 element with an atomic weight of 65.38. The number of electrons in each of zinc's shells is 2, 8, 18, 2, and its electron configuration is [Ar] 3d10 4s2. Zinc Bohr ModelThe zinc atom has a radius of 134 pm and a Van der Waals radius of 210 pm. Zinc was discovered by Indian metallurgists prior to 1000 BC and first recognized as a unique element by Rasaratna Samuccaya in 800. Zinc was first isolated by Andreas Marggraf in 1746.Elemental Zinc In its elemental form, zinc has a silver-gray appearance. It is brittle at ordinary temperatures but malleable at 100 °C to 150 °C. It is a fair conductor of electricity, and burns in air at high red producing white clouds of the oxide. Zinc is mined from sulfidic ore deposits. It is the 24th most abundant element in the earth's crust and the fourth most common metal in use (after iron, aluminum, and copper). The name zinc originates from the German word "zin," meaning tin. For more information on zinc, including properties, safety data, research, and American Elements' catalog of zinc products, visit the Zinc element page.

Indium (In) atomic and molecular weight, atomic number and elemental symbolIndium (atomic symbol: In, atomic number: 49) is a Block P, Group 13, Period 5 element with an atomic weight of 114.818. The number of electrons in each of indium's shells is [2, 8, 18, 18, 3] and its electron configuration is [Kr] 4d10 5s2 5p1. The indium atom has a radius of 162.6 pm and a Van der Waals radius of 193 pm. Indium was discovered by Ferdinand Reich and Hieronymous Theodor Richter in 1863. Indium Bohr Model It is a relatively rare, extremely soft metal is a lustrous silvery Elemental Indium gray and is both malleable and easily fusible. It has similar chemical properties to gallium such as a low melting point and the ability to wet glass. Fields such as optics and microelectronics that utilize semiconductor technology have wide uses for indium, especially in the form of Indiun Tin Oxide (ITO). Thin films of Copper Indium Gallium Selenide (CIGS) are used in high-performing solar cells. Indium's name is derived from the Latin word indicum, meaning violet. For more information on indium, including properties, safety data, research, and American Elements' catalog of indium products, visit the Indium element page.

Tellurium Bohr ModelTellurium (Te) atomic and molecular weight, atomic number and elemental symbolTellurium (atomic symbol: Te, atomic number: 52) is a Block P, Group 16, Period 5 element with an atomic radius of 127.60. The number of electrons in each of tellurium's shells is 2, 8, 18, 18, 6 and its electron configuration is [Kr] 4d10 5s2 5p4. Tellurium was discovered by Franz Muller von Reichenstein in 1782 and first isolated by Martin Heinrich Klaproth in 1798. In its elemental form, tellurium has a silvery lustrous gray appearance.Elemental Tellurium The tellurium atom has a radius of 140 pm and a Van der Waals radius of 206 pm. Tellurium is most commonly sourced from the anode sludges produced as a byproduct of copper refining. The name Tellurium originates from the Greek word Tellus, meaning Earth. For more information on tellurium, including properties, safety data, research, and American Elements' catalog of tellurium products, visit the Tellurium element page.


HEALTH, SAFETY & TRANSPORTATION INFORMATION
Material Safety Data Sheet MSDS
Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
Risk Codes N/A
Safety Precautions N/A
RTECS Number N/A
Transport Information N/A
WGK Germany N/A
Globally Harmonized System of
Classification and Labelling (GHS)
N/A        

ZINC INDIUM TELLURIDE SYNONYMS
Indium zinc telluride; indium doped zinc telluride; zinc indium tellurium; Zn-In-Te

CUSTOMERS FOR ZINC INDIUM TELLURIDE POWDER HAVE ALSO LOOKED AT
Zinc Bars ZnCdSe Zinc Foil Tin Bismuth Zinc Alloy Zinc Nanoparticles
Zinc Nitrate Zinc Acetylacetonate Zinc Oxide Sputtering Target Zinc Powder Zinc Acetate
Zinc Oxide Nanopowder Zinc Metal Zinc Pellets Zinc Oxide Pellets Zinc Chloride
Show Me MORE Forms of Zinc

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Zinc

  • Structural Correlations between Luminescent Properties and Excited State Internal Proton Transfer in some Zinc(II) N,N’-bis(Salicylidenes). Cristina Aparecida Barboza, José Carlos Germino, Anderson Martinez Santana, Fernando Júnior Quites, Pedro Antônio Muniz Vazquez, and Teresa Dib Zambon Atvars. J. Phys. Chem. C: February 16, 2015
  • Enhancement of the Yield of Photoinduced Charge Separation in Zinc Porphyrin-Quantum Dot Complexes by a bis-Dithiocarbamate Linkage. Shengye Jin, Mario Tagliazucchi, Ho-Jin Son, Rachel Harris, Kenneth Aruda, David J. Weinberg, Alexander B Nepomnyashchii, Omar K. Farha, Joseph T. Hupp, and Emily A. Weiss. J. Phys. Chem. C: February 12, 2015
  • Macrocyclic Platforms for the Construction of Tetranuclear Oxo and Hydroxo Zinc Clusters. Thomas Cadenbach, James R. Pankhurst, Tommy A. Hofmann, Massimiliano Curcio, Polly L. Arnold, and Jason B. Love. Organometallics: February 10, 2015
  • New insight into mercury emissions from zinc smelters using mass flow analysis. Qingru Wu, Shuxiao Wang, Mulin Hui, Fengyang Wang, Lei Zhang, Lei Duan, and Yao Luo. Environ. Sci. Technol.: February 8, 2015
  • Nitrogen-Rich Salts Based on the Energetic [Monoaquabis(N,N-bis(1H-tetrazol-5-yl)amine)-zinc(II)] Anion: A Promising Design in the Development of New Energetic Materials. Fugang Li, Yangang Bi, Wenyuan Zhao, Tonglai Zhang, Zunning Zhou, and Li Yang. Inorg. Chem.: February 5, 2015
  • Tailoring Native Defects and Zinc Impurities in Li4Ti5O12: Insights from First-Principles Study. Huan Duan, Jia Li, Hongda Du, Sum Wai Chiang, Chengjun Xu, Wenhui Duan, and Feiyu Kang. J. Phys. Chem. C: February 5, 2015
  • Aggregation-Induced Structure Transition of Protein-Stabilized Zinc Copper Nanoclusters for Amplified Chemiluminescence. Hui Chen, Ling Lin, Haifang Li, Jianzhang Li, and Jin-Ming Lin. ACS Nano: February 3, 2015
  • Zinc oxide supported trans-CoD(p-Cl)PPCl type Metalloporphyrins catalyst for cyclohexane oxidation to cyclohexanol and cyclohexanone with high yield. Yujia Xie, Fengyong Zhang, Pingle Liu, Fang Hao, and Hean Luo. Ind. Eng. Chem. Res.: February 2, 2015
  • Additive Effects in the Formation of Fluorescent Zinc Metal–Organic Frameworks with 5-Hydroxyisophthalate. Matthew D. Hill, Samir El-Hankari, Mauro Chiacchia, Graham J. Tizzard, Simon J. Coles, Darren Bradshaw, Jonathan A. Kitchen, and Tony D. Keene. Crystal Growth & Design: January 29, 2015
  • Classification of Zinc Sulfide Quantum Dots by Size: Insights into the Particle Surface–Solvent Interaction of Colloids. Doris Segets, Christian Lutz, Kyoko Yamamoto, So Komada, Sebastian Süß, Yasushige Mori, and Wolfgang Peukert. J. Phys. Chem. C: January 29, 2015

Recent Research & Development for Indium

  • Iron- and Indium-Catalyzed Reactions toward Nitrogen- and Oxygen-Containing Saturated Heterocycles. Johan Cornil, Laurine Gonnard, Charlélie Bensoussan, Anna Serra-Muns, Christian Gnamm, Claude Commandeur, Malgorzata Commandeur, Sébastien Reymond, Amandine Guérinot, and Janine Cossy. Acc. Chem. Res.: February 12, 2015
  • On the Electronic Structures and Transport Properties of n-Type Doped Indium oxides. Zhangxian Chen, Liang Huang, Qingfan Zhang, Yongjie Xi, Ran Li, Wanchao Li, Guo Qin Xu, and Hansong Cheng. J. Phys. Chem. C: February 10, 2015
  • Nanoscale Optical Properties of Indium Gallium Nitride/Gallium Nitride Nanodisk-in-Rod Heterostructures. Xiang Zhou, Ming-Yen Lu, Yu-Jung Lu, Eric J. Jones, Shangjr Gwo, and Silvija Gradeak. ACS Nano: February 7, 2015
  • Constructing Crystalline Heterometallic Indium–Organic Frameworks by the Bifunctional Method. Jinjie Qian, Feilong Jiang, Kongzhao Su, Jie Pan, Linfeng Liang, Feifei Mao, and Maochun Hong. Crystal Growth & Design: February 2, 2015
  • Influence of Source and Drain Contacts on the Properties of Indium–Gallium–Zinc-Oxide Thin-Film Transistors based on Amorphous Carbon Nanofilm as Barrier Layer. Dongxiang Luo, Hua Xu, Mingjie Zhao, Min Li, Miao Xu, Jianhua Zou, Hong Tao, Lei Wang, and Junbiao Peng. ACS Appl. Mater. Interfaces: January 26, 2015
  • Efficient Chemisorption of Organophosphorous Redox Probes on Indium Tin Oxide Surfaces under Mild Conditions. Amélie Forget, Benoît Limoges, and Véronique Balland. Langmuir: January 22, 2015
  • Photoinduced Carrier Dynamics of Nearly Stoichiometric Oleylamine-Protected Copper Indium Sulfide Nanoparticles and Nanodisks. Masanori Sakamoto, Lihui Chen, Makoto Okano, David M. Tex, Yoshihiko Kanemitsu, and Toshiharu Teranishi. J. Phys. Chem. C: January 19, 2015
  • Electrochemical Modification of Indium Tin Oxide Using Di(4-nitrophenyl) Iodonium Tetrafluoroborate. Matthew R. Charlton, Kristin J. Suhr, Bradley J. Holliday, and Keith J. Stevenson. Langmuir: December 19, 2014
  • Dehydrative Thiolation of Allenols: Indium vs Gold Catalysis. S. Webster, P. C. Young, G. Barker, G. M. Rosair, and A.-L. Lee. J. Org. Chem.: December 18, 2014
  • DNA Adsorption by Indium Tin Oxide Nanoparticles. Biwu Liu and Juewen Liu. Langmuir: December 18, 2014

Recent Research & Development for Tellurides

  • Design of Lead Telluride Based Thermoelectric Materials through Incorporation of Lead Sulfide Inclusions or Ligand Stripping of Nano-Sized Building Blocks. Derak James, Xu Lu, Alexander Chi Nguyen, Donald T. Morelli, and Stephanie L. Brock. J. Phys. Chem. C: February 11, 2015
  • Efficient and Ultrafast Formation of Long-Lived Charge-Transfer Exciton State in Atomically Thin Cadmium Selenide/Cadmium Telluride Type-II Heteronanosheets. Kaifeng Wu, Qiuyang Li, Yanyan Jia, James R. McBride, Zhao-xiong Xie, and Tianquan Lian. ACS Nano: December 30, 2014
  • Quantitative Analysis of Free Fatty Acids in Human Serum Using Biexciton Auger Recombination in Cadmium Telluride Nanoparticles Loaded on Zeolite. Mengrui Yang and Tatsuya Fujino. Anal. Chem.: September 15, 2014
  • Mercury Telluride Colloidal Quantum Dots: Electronic Structure, Size-Dependent Spectra, and Photocurrent Detection up to 12 ?m. Sean E. Keuleyan, Philippe Guyot-Sionnest, Christophe Delerue, and Guy Allan. ACS Nano: August 12, 2014
  • Electron-Deficient Telluride Cs3Cu20Te13 with Sodalite-Type Network: Syntheses, Structures, and Physical Properties. Wen-Juan Huai, Jin-Ni Shen, Hua Lin, Ling Chen, and Li-Ming Wu. Inorg. Chem.: May 13, 2014
  • Thermoelectric Properties of Silver TellurideBismuth Telluride Nanowire Heterostructure Synthesized by Site-Selective Conversion. Haiyu Fang, Haoran Yang, and Yue Wu. Chem. Mater.: May 8, 2014
  • n-Type Carbon Nanotubes/Silver Telluride Nanohybrid Buckypaper with a High-Thermoelectric Figure of Merit. Weiyun Zhao, Hui Teng Tan, Li Ping Tan, Shufen Fan, Huey Hoon Hng, Yin Chiang Freddy Boey, Igor Beloborodov, and Qingyu Yan. ACS Appl. Mater. Interfaces: March 19, 2014
  • Intense Pulsed Light Treatment of Cadmium Telluride Nanoparticle-Based Thin Films. Ruvini Dharmadasa, Brandon Lavery, I. M. Dharmadasa, and Thad Druffel. ACS Appl. Mater. Interfaces: March 17, 2014
  • Generalized One-Pot Synthesis of Copper Sulfide, Selenide-Sulfide, and Telluride-Sulfide Nanoparticles. Pearl L. Saldanha, Rosaria Brescia, Mirko Prato, Hongbo Li, Mauro Povia, Liberato Manna, and Vladimir Lesnyak. Chem. Mater.: January 9, 2014
  • Synthesis of Uniform Disk-Shaped Copper Telluride Nanocrystals and Cation Exchange to Cadmium Telluride Quantum Disks with Stable Red Emission. Hongbo Li, Rosaria Brescia, Mauro Povia, Mirko Prato, Giovanni Bertoni, Liberato Manna, and Iwan Moreels. J. Am. Chem. Soc.: July 18, 2013