AgTaS3 Crystal
ORDER
Product | Product Code | ORDER | SAFETY DATA | Technical data |
---|---|---|---|---|
(5N) 99.999% AgTaS3 Crystal | AG-TA3-05-XTAL | Pricing Add to cart only | SDS > | Data Sheet > |
(6N) 99.9999% AgTaS3 Crystal | AG-TA3-06-XTAL | Pricing Add to cart only | SDS > | Data Sheet > |
AgTaS3 Crystal Properties (Theoretical)
Compound Formula | AgTaS3 |
---|---|
Molecular Weight | 385.0141 |
Appearance | Silver to dark gray crystals |
Melting Point | N/A |
Boiling Point | N/A |
Density | 6.743 g/cm3 |
Solubility in H2O | N/A |
Crystal Phase / Structure | Orthorhombic |
AgTaS3 Crystal Health & Safety Information
Signal Word | N/A |
---|---|
Hazard Statements | N/A |
Hazard Codes | N/A |
Risk Codes | N/A |
Safety Statements | N/A |
Transport Information | N/A |
About AgTaS3 Crystal
Synonyms
Silver tantalum sulfide
Chemical Identifiers
Linear Formula | AgTaS3 |
---|---|
Pubchem CID | N/A |
MDL Number | N/A |
EC No. | N/A |
Beilstein/Reaxys No. | |
Chemical Formula | |
Molecular Weight | |
Standard InchI | |
Appearance | |
Melting Point | |
Boiling Point | |
Density |
Related Applications, Forms & Industries for AgTaS3 Crystal
Packaging Specifications
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.
Related Elements
See more Silver products. Silver (atomic symbol: Ag, atomic number: 47) is a Block D, Group 11, Period 5 element with an atomic weight of 107.8682. The number of electrons in each of Silver's shells is 2, 8, 18, 18, 1 and its electron configuration is [Kr]4d10 5s1. The silver atom has a radius of 144 pm and a Van der Waals radius of 203 pm. Silver was first discovered by Early Man prior to 5000 BC. In its elemental form, silver has a brilliant white metallic luster.
It is a little harder than gold and is very ductile and malleable, being exceeded only by gold and perhaps palladium. Pure silver has the highest electrical and thermal conductivity of all metals and possesses the lowest contact resistance. It is stable in pure air and water, but tarnishes when exposed to ozone, hydrogen sulfide, or air containing sulfur. It is found in copper, copper-nickel, lead, and lead-zinc ores, among others. Silver was named after the Anglo-Saxon word "seolfor" or "siolfur," meaning 'silver'.
See more Tantalum products. Tantalum (atomic symbol: Ta, atomic number: 73) is a Block D, Group 5, Period 6 element with an atomic weight of 180.94788. The number of electrons in each of tantalum's shells is [2, 8, 18, 32, 11, 2] and its electron configuration is [Xe] 4f14 5d3 6s2. The tantalum atom has a radius of 146 pm and a Van der Waals radius of 217 pm.
Tantalum was first discovered by Anders G. Ekeberg in 1802 in Uppsala, Sweden however, it was not until 1844 when Heinrich Rose first recognized it as a distinct element. In its elemental form, tantalum has a grayish blue appearance. Tantalum is found in the minerals tantalite, microlite, wodginite, euxenite, and polycrase. Due to the close relation of tantalum to niobium in the periodic table, Tantalum's name originates from the Greek word Tantalos meaning Father of Niobe in Greek mythology.
See more Sulfur products. Sulfur (or Sulphur) (atomic symbol: S, atomic number: 16) is a Block P, Group 16, Period 3 element with an atomic radius of 32.066. The number of electrons in each of Sulfur's shells is 2, 8, 6 and its electron configuration is [Ne] 3s2 3p4. In its elemental form, sulfur has a light yellow appearance. The sulfur atom has a covalent radius of 105 pm and a Van der Waals radius of 180 pm. In nature, sulfur can be found in hot springs, meteorites, volcanoes, and as galena, gypsum, and epsom salts. Sulfur has been known since ancient times but was not accepted as an element until 1777, when Antoine Lavoisier helped to convince the scientific community that it was an element and not a compound.
TODAY'S TOP DISCOVERY™!
Los Angeles, CA