Linear Formula:

SbAsS3

MDL Number:

N/A

EC No.:

N/A

ORDER

PRODUCT Product Code ORDER SAFETY DATA TECHNICAL DATA
(6N) 99.9999% Antimony Arsenic Sulfide SbAsS3 Crystals
SB-ASS-06-XTAL
Pricing > SDS > Data Sheet >

Antimony Arsenic Sulfide Properties (Theoretical)

Compound Formula AsSbS3
Molecular Weight 293.81
Appearance Reddish-orange crystals
Melting Point N/A
Boiling Point N/A
Density 3.98 g/cm3
Solubility in H2O N/A

Antimony Arsenic Sulfide Health & Safety Information

Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
RTECS Number N/A
Transport Information N/A
MSDS / SDS

About Antimony Arsenic Sulfide

American Elements manufactures Antimony Arsenic Sulfide (SbAsS3) as part of its comprehensive catalog of two dimensional (2D) materials including transition metal dichalcogenides (TMDCs) and trichalcogenides (TMTCs), MXenes, and nanomaterials such as graphene. Materials are produced with ultra high purities (≥99.9999%) via crystal growth techniques such as chemical vapor transport (CVT), flux transport, or Czochralski pulling. Novel 2D semiconductors and topological insulators have numerous applications in advanced technologies and American Elements engineers can provide guidance to customers on materials characterization and selection. Powders and other forms may be available by request. Please request a quote above to receive pricing information based on your specifications.

Antimony Arsenic Sulfide Synonyms

Antimony arsenide sulfide, Antimony arsenic trisulfide, Synthetic getchellite, Sb2xAs2(1-x)S3, Sb1.02As0.98S3

Chemical Identifiers

Linear Formula SbAsS3
MDL Number N/A
EC No. N/A
Pubchem CID N/A

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Related Elements

Antimony

See more Antimony products. Antimony (atomic symbol: Sb, atomic number: 51) is a Block P, Group 15, Period 5 element with an atomic radius of 121.760. Antimony Bohr Model The number of electrons in each of antimony's shells is 2, 8, 18, 18, 5 and its electron configuration is [Kr] 4d10 5s2 5p3. The antimony atom has a radius of 140 pm and a Van der Waals radius of 206 pm. Antimony was discovered around 3000 BC and first isolated by Vannoccio Biringuccio in 1540 AD. In its elemental form, antimony has a silvery lustrous gray appearance. Elemental Antimony The most common source of antimony is the sulfide mineral known as stibnite (Sb2S3), although it sometimes occurs natively as well. Antimony has numerous applications, most commonly in flame-retardant materials it also increases the hardness and strength of lead when combined in an alloy and is frequently employed as a dopant in semiconductor materials. Its name is derived from the Greek words anti and monos, meaning a metal not found by itself.

Arsenic

See more Arsenic products. Arsenic (atomic symbol: As, atomic number: 33) is a Block P, Group 15, Period 4 element with an atomic radius of 74.92160. Arsenic Bohr ModelThe number of electrons in each of arsenic's shells is 2, 8, 18, 5 and its electron configuration is [Ar] 3d10 4s2 4p3. The arsenic atom has a radius of 119 pm and a Van der Waals radius of 185 pm. Arsenic was discovered in the early Bronze Age, circa 2500 BC. It was first isolated by Albertus Magnus in 1250 AD. In its elemental form, arsenic is a metallic grey, brittle, crystalline, semimetallic solid. Elemental ArsenicArsenic is found in numerous minerals including arsenolite (As2O3), arsenopyrite (FeAsS), loellingite (FeAs2), orpiment (As2S3), and realgar (As4S4). Arsenic has numerous applications as a semiconductor and other electronic applications as indium arsenide, silicon arsenide and tin arsenide. Arsenic is finding increasing uses as a doping agent in solid-state devices such as transistors.

Sulfur

See more Sulfur products. Sulfur (or Sulphur) (atomic symbol: S, atomic number: 16) is a Block P, Group 16, Period 3 element with an atomic radius of 32.066. Sulfur Bohr ModelThe number of electrons in each of Sulfur's shells is 2, 8, 6 and its electron configuration is [Ne] 3s2 3p4. In its elemental form, sulfur has a light yellow appearance. The sulfur atom has a covalent radius of 105 pm and a Van der Waals radius of 180 pm. In nature, sulfur can be found in hot springs, meteorites, volcanoes, and as galena, gypsum, and epsom salts. Sulfur has been known since ancient times but was not accepted as an element until 1777, when Antoine Lavoisier helped to convince the scientific community that it was an element and not a compound.

TODAY'S SCIENCE POST!

September 24, 2020
Los Angeles, CA
Each business day American Elements' scientists & engineers post their choice for the most exciting materials science news of the day

Highly efficient perovskite solar cells with enhanced stability and minimised lead leakage