Skip to Page Content

Bronze Electrodes

High Purity Cu Sn Electrodes


Product Product Code Request Quote
(2N) 99% Bronze Electrode BRZ-M-02-EL Request Quote
(3N) 99.9% Bronze Electrode BRZ-M-03-EL Request Quote
(4N) 99.99% Bronze Electrode BRZ-M-04-EL Request Quote
(5N) 99.999% Bronze Electrode BRZ-M-05-EL Request Quote

American Elements specializes in producing high purity uniform shaped Bronze Electrodes with the highest possible density and smallest possible average grain sizes for use in semiconductor, Chemical Vapor Deposition (CVD) and Physical Vapor Deposition (PVD) processes including Thermal and Electron Beam (E-Beam) Evaporation, Low Temperature Organic Evaporation, Atomic Layer Deposition (ALD), Metallic-Organic and Chemical Vapor Deposition (MOCVD). American Elements produces high purity Bronze Electrodes which can be used in chemical and physics experiments related to mass and heat conductivity or for demonstration purposes. Materials are produced using crystallization, solid state and other ultra high purification processes such as sublimation. American Elements specializes in producing custom compositions for commercial and research applications and for new proprietary technologies. American Elements casts any of the rare earth metals and most other advanced materials into rod, bar, or plate form, as well as other machined shapes and through other processes such as nanoparticles () and in the form of solutions and organometallics. See safety data and research below and pricing/lead time above.

Copper Bohr ModelCopper (Cu) atomic and molecular weight, atomic number and elemental symbolCopper (atomic symbol: Cu, atomic number: 29) is a Block D, Group 11, Period 4 element with an atomic weight of 63.546. The number of electrons in each of copper's shells is 2, 8, 18, 1 and its electron configuration is [Ar] 3d10 4s1. The copper atom has a radius of 128 pm and a Van der Waals radius of 186 pm. Copper was first discovered by Early Man prior to 9000 BC. In its elemental form, copper has a red-orange metallic luster appearance. Elemental Copper Of all pure metals, only silver has a higher electrical conductivity.The origin of the word copper comes from the Latin word 'cuprium' which translates as "metal of Cyprus." Cyprus, a Mediterranean island, was known as an ancient source of mined copper. For more information on copper, including properties, safety data, research, and American Elements' catalog of copper products, visit the Copper element page.

Tin Bohr ModelTin (Sn) atomic and molecular weight, atomic number and elemental symbolTin (atomic symbol: Sn, atomic number: 50) is a Block P, Group 14, Period 5 element with an atomic weight of 118.710. The number of electrons in each of tin's shells is 2, 8, 18, 18, 4 and its electron configuration is [Kr] 4d10 5s2 5p2. The tin atom has a radius of 140.5 pm and a Van der Waals radius of 217 pm.In its elemental form, tin has a silvery-gray metallic appearance. It is malleable, ductile and highly crystalline. High Purity (99.9999%) Tin (Sn) MetalTin has nine stable isotopes and 18 unstable isotopes. Under 3.72 degrees Kelvin, Tin becomes a superconductor. Applications for tin include soldering, plating, and such alloys as pewter. The first uses of tin can be dated to the Bronze Age around 3000 BC in which tin and copper were combined to make the alloy bronze. The origin of the word tin comes from the Latin word Stannum which translates to the Anglo-Saxon word tin. For more information on tin, including properties, safety data, research, and American Elements' catalog of tin products, visit the Tin element page.


CUSTOMERS FOR BRONZE ELECTRODES HAVE ALSO LOOKED AT
Copper Oxide Copper Nitrate Copper Pellets Copper Acetylacetonate Copper Acetate
Copper Tin Silver Alloy Copper Metal Copper Oxide Pellets Copper Wire Copper Foil
Copper Chloride Copper Sputtering Target Copper Powder Copper Nanoparticles Aluminum Magnesium Copper Alloy
Show Me MORE Forms of Copper

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Copper

  • Crystal structure of tetra-kis-(μ3-2-{[1,1-bis-(hy-droxy-meth-yl)-2-oxidoeth-yl]imino-meth-yl}phenolato)tetra-copper(II) ethanol monosolvate 2.5-hydrate.. Wang W, Ran J.. Acta Crystallogr E Crystallogr Commun. 2015 Apr 22
  • Crystal structure of di-chlorido-bis-(methyl isonicotinate-κN)copper(II).. Ahadi E, Hosseini-Monfared H, Mayer P.. Acta Crystallogr E Crystallogr Commun. 2015 Apr 18
  • Copper, lead and zinc removal from metal contaminated wastewater by adsorption onto agricultural wastes.. Janyasuthiwong S, Phiri SM, Kijjanapanich P, Rene ER, Esposito G, Lens PN.. Environ Technol. 2015 May 22:1-33.
  • Co-solvent enhanced zinc oxysulfide buffer layers in Kesterite copper zinc tin selenide solar cells.. Steirer KX, Garris RL, Li JV, Dzara MJ, Ndione PF, Ramanathan K, Repins I, Teeter G, Perkins CL.. Phys Chem Chem Phys. 2015 May 22.
  • The relative importance of diet-related and waterborne effects of copper for a leaf-shredding invertebrate.. Zubrod JP, Englert D, Rosenfeldt RR, Wolfram J, Lüderwald S, Wallace D, Schnetzer N, Schulz R, Bundschuh M.. Environ Pollut. 2015 May 19
  • Low-current field-assisted assembly of copper nanoparticles for current collectors.. Liu L, Choi BG, Tung SO, Hu T, Liu Y, Li T, Zhao T, Kotov NA.. Faraday Discuss. 2015 May 21.
  • Toxic potential of copper-doped ZnO nanoparticles in Drosophila melanogaster (Oregon R).. Siddique YH, Haidari M, Khan W, Fatima A, Jyoti S, Khanam S, Naz F, Rahul, Ali F, Singh BR, Beg T, Mohibullah, Naqvi AH.. Toxicol Mech Methods. 2015 May 22:1-8.
  • Being two is better than one-catalytic reductions with dendrimer encapsulated copper- and copper-cobalt-subnanoparticles.. Ficker M, Petersen JF, Gschneidtner T, Rasmussen AL, Purdy T, Hansen JS, Hansen TH, Husted S, Moth Poulsen K, Olsson E, Christensen JB.. Chem Commun (Camb). 2015 May 22.
  • Sustainable Hydrogen Production by Ethanol Steam Reforming using a Partially Reduced Copper-Nickel Oxide Catalyst. Chen LC, Cheng H, Chiang CW, Lin SD. ChemSusChem. 2015 Apr 15.: ChemSusChem
  • Aerosol assisted CVD grown WO3 nanoneedles decorated with copper oxide nanoparticles for the selective and humidity resilient detection of H2S. Annanouch FE, Haddi Z, Vallejos S, Umek P, Guttmann P, Bittencourt C, Llobet E. ACS Appl Mater Interfaces. 2015 Mar 16.

Recent Research & Development for Tin

  • Formation mechanism of rutile tio2 rods on fluorine doped tin oxide glass.. Meng X, Shin DW, Yu SM, Park MH, Yang C, Lee JH, Yoo JB.. J Nanosci Nanotechnol. 2014 Nov
  • Epitaxial growth of GaN nanowires with high structural perfection on a metallic TiN film.. Wölz M, Hauswald C, Flissikowski T, Gotschke T, Fernandez-Garrido S, Brandt O, Grahn HT, Geelhaar L, Riechert H.. Nano Lett. 2015 May 22.
  • Microstructural characteristics of tin oxide-based thin films on (0001) Al2O3 substrates: effects of substrate temperature and RF power during co-sputtering.. Hwang S, Lee JH, Kim YY, Yun MG, Lee KH, Lee JY, Cho HK.. J Nanosci Nanotechnol. 2014 Dec
  • Enzyme-free glucose sensor based on Au nanobouquet fabricated indium tin oxide electrode.. Lee JH, El-Said WA, Oh BK, Choi JW.. J Nanosci Nanotechnol. 2014 Nov
  • Voltage-Controlled Ring Oscillators Based on Inkjet Printed Carbon Nanotubes and Zinc Tin Oxide.. Kim B, Park J, Geier M, Hersam MC, Dodabalapur A.. ACS Appl Mater Interfaces. 2015 May 12.
  • A durable surface-enhanced Raman scattering substrate: ultrathin carbon layer encapsulated Ag nanoparticle arrays on indium-tin-oxide glass.. Bian J, Li Q, Huang C, Guo Y, Zaw M, Zhang RQ.. Phys Chem Chem Phys. 2015 May 18.
  • Co-solvent enhanced zinc oxysulfide buffer layers in Kesterite copper zinc tin selenide solar cells.. Steirer KX, Garris RL, Li JV, Dzara MJ, Ndione PF, Ramanathan K, Repins I, Teeter G, Perkins CL.. Phys Chem Chem Phys. 2015 May 22.
  • Solution-processed silver nanowire/indium-tin-oxide nanoparticle hybrid transparent conductors with high thermal stability.. Hong SJ, Kim JW, Kim YH.. J Nanosci Nanotechnol. 2014 Dec
  • Formation of Copper Zinc Tin Sulfide Thin Films from Colloidal Nanocrystal Dispersions via Aerosol-Jet Printing and Compaction.. Williams BA, Mahajan A, Smeaton MA, Holgate CS, Aydil ES, Francis LF.. ACS Appl Mater Interfaces. 2015 May 19.
  • Nanotubular Heterostructure of Tin Dioxide/Titanium Dioxide as a Binder-Free Anode in Lithium-Ion Batteries. Kim M, Lee J, Lee S, Seo S, Bae C, Shin H. ChemSusChem. 2015 Mar 20.: ChemSusChem