20th anniversary seal20th anniversary seal20th anniversary seal

Dysprosium Nanoparticle Dispersion

Dysprosium Nanodispersion

CAS #:

Linear Formula:

Dy

MDL Number:

MFCD00010982

EC No.:

231-073-9

ORDER

PRODUCT Product Code ORDER SAFETY DATA TECHNICAL DATA
(2N) 99% Dysprosium Nanoparticle Dispersion
DY-M-02-NPD
Pricing > SDS > Data Sheet >
(3N) 99.9% Dysprosium Nanoparticle Dispersion
DY-M-03-NPD
Pricing > SDS > Data Sheet >
(3N5) 99.95% Dysprosium Nanoparticle Dispersion
DY-M-035-NPD
Pricing > SDS > Data Sheet >
(4N) 99.99% Dysprosium Nanoparticle Dispersion
DY-M-04-NPD
Pricing > SDS > Data Sheet >
(5N) 99.999% Dysprosium Nanoparticle Dispersion
DY-M-05-NPD
Pricing > SDS > Data Sheet >
Question? Ask an American Elements EngineerWHOLESALE/SKU 0000-742-242013

Dysprosium Nanoparticle Dispersion Properties

Molecular Weight

162.5

Appearance

Silvery

Melting Point

1412 °C

Boiling Point

2562°C

Crystal Phase / Structure

N/A

Thermal Expansion

(r.t.) (?, poly) 9.9 µm/(m·K)

Young's Modulus

(? form) 61.4 GPa

Vickers Hardness

540 MPa

Poisson's Ratio

(? form) 0.247

True Density

8.55 g/cm3

Bulk Density

N/A

Average Particle Size

N/A

Size Range

N/A

Specific Surface Area

N/A

Morphology

N/A

Dysprosium Nanoparticle Dispersion Health & Safety Information

Signal Word Warning
Hazard Statements H228
Hazard Codes N/A
Risk Codes N/A
Safety Statements 22-24/25
RTECS Number N/A
Transport Information N/A
WGK Germany 3
MSDS / SDS

About Dysprosium Nanoparticle Dispersion

Dysprosium Nanoparticle Dispersions are suspensions of dysprosium nanoparticles in water or various organic solvents such as ethanol or mineral oil. American Elements manufactures metallic nanopowders and nanoparticles with typical particle sizes ranging from 10 to 200nm and in coated and surface functionalized forms. Our nanodispersion and nanofluid experts can provide technical guidance for selecting the most appropriate particle size, solvent, and coating material for a given application. We can also produce custom nanomaterials tailored to the specific requirements of our customers upon request.

Dysprosium Nanoparticle Dispersion Synonyms

Dysprosium nanopowder suspension, aqueous Dysprosium nanoparticle solution, Dysprosium nanofluid

Dysprosium Nanoparticle Dispersion Chemical Identifiers

Linear Formula

Dy

Pubchem CID

23912

MDL Number

MFCD00010982

EC No.

231-073-9

IUPAC Name

N/A

SMILES

[Dy]

InchI Identifier

InChI=1S/Dy

InchI Key

KBQHZAAAGSGFKK-UHFFFAOYSA-N

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Related Elements

See more Dysprosium products. Dysprosium (atomic symbol: Dy, atomic number: 66) is a Block F, Group 3, Period 6 element with an atomic radius of 162.5. Dysprosium Bohr ModelThe number of electrons in each of dysprosium's shells is [2, 8, 18, 28, 8, 2] and its electron configuration is [Xe] 4f10 6s2. The dysprosium atom has an atomic radius of 178 pm and a Van der Waals radius of 229 pm. Dysprosium was first discovered by Paul Emile Lecoq de Boisbaudran in 1886.In its elemental form, dysprosium has a silvery-white appearance. Elemental Dysprosium PictureIt is a member of the lanthanide or rare earth series of elements and, along with holmium, has the highest magnetic strength of all other elements on the periodic table, especially at low temperatures. Dysprosium is found in various minerals including bastnäsite, blomstrandine, euxenite, fergusonite, gadolinite, monazite, polycrase and xenotime. It is not found in nature as a free element. The element name originates from the Greek word dysprositos, meaning hard to get at.

Recent Research

Cobalt nanoparticles supported on N-doped mesoporous carbon as a highly efficient catalyst for the synthesis of aromatic amines., Cui, Xueliang, Liang Kun, Tian Meng, Zhu Yangyang, Ma Jiantai, and Dong Zhengping , J Colloid Interface Sci, 2017 Sep 01, Volume 501, p.231-240, (2017)

PLLA microcapsules combined with silver nanoparticles and chlorhexidine acetate showing improved antibacterial effect., Zhou, Yuwei, Hu Ke, Guo Zhaobin, Fang Kun, Wang Xing, Yang Fang, and Gu Ning , Mater Sci Eng C Mater Biol Appl, 2017 Sep 01, Volume 78, p.349-353, (2017)

Using reduced graphene oxide-Ca:CdSe nanocomposite to enhance photoelectrochemical activity of gold nanoparticles functionalized tungsten oxide for highly sensitive prostate specific antigen detection., Wang, Xueping, Xu Rui, Sun Xu, Wang Yaoguang, Ren Xiang, Du Bin, Wu Dan, and Wei Qin , Biosens Bioelectron, 2017 Oct 15, Volume 96, p.239-245, (2017)

Antitumor activity of intratracheal inhalation of temozolomide (TMZ) loaded into gold nanoparticles and/or liposomes against urethane-induced lung cancer in BALB/c mice., Hamzawy, Mohamed A., Abo-Youssef Amira M., Salem Heba F., and Mohammed Sameh A. , Drug Deliv, 2017 Nov, Volume 24, Issue 1, p.599-607, (2017)

Influence of PEG coating on the oral bioavailability of gold nanoparticles in rats., Alalaiwe, Ahmed, Roberts Georgia, Carpinone Paul, Munson John, and Roberts Stephen , Drug Deliv, 2017 Nov, Volume 24, Issue 1, p.591-598, (2017)

Mesoporous metallic rhodium nanoparticles., Jiang, Bo, Li Cuiling, Dag Ömer, Abe Hideki, Takei Toshiaki, Imai Tsubasa, Hossain Md Shahriar A., Islam Md Tofazzal, Wood Kathleen, Henzie Joel, et al. , Nat Commun, 2017 May 19, Volume 8, p.15581, (2017)

Rapid, sensitive, and reusable detection of glucose by highly monodisperse nickel nanoparticles decorated functionalized multi-walled carbon nanotubes., Başkaya, Gaye, Yıldız Yunus, Savk Aysun, Okyay Tugba Onal, Eriş Sinan, Sert Hakan, and Şen Fatih , Biosens Bioelectron, 2017 May 15, Volume 91, p.728-733, (2017)

Gold nanoclusters as switch-off fluorescent probe for detection of uric acid based on the inner filter effect of hydrogen peroxide-mediated enlargement of gold nanoparticles., Liu, Yanyan, Li Hongchang, Guo Bin, Wei Lijuan, Chen Bo, and Zhang Youyu , Biosens Bioelectron, 2017 May 15, Volume 91, p.734-740, (2017)

A noninvasive cancer detection strategy based on gold nanoparticle surface-enhanced raman spectroscopy of urinary modified nucleosides isolated by affinity chromatography., Feng, Shangyuan, Zheng Zuci, Xu Yuanji, Lin Jinyong, Chen Guannan, Weng Cuncheng, Lin Duo, Qiu Sufang, Cheng Min, Huang Zufang, et al. , Biosens Bioelectron, 2017 May 15, Volume 91, p.616-622, (2017)

TODAY'S SCIENCE POST!

June 23, 2017
Los Angeles, CA
Each business day American Elements' scientists & engineers post their choice for the most exciting materials science news of the day

Magnetic space tug could target dead satellites