Synthesis of Au nanoparticle-decorated carbon nitride nanorods with plasmon-enhanced photoabsorption and photocatalytic activity for removing various pollutants from water.

Title Synthesis of Au nanoparticle-decorated carbon nitride nanorods with plasmon-enhanced photoabsorption and photocatalytic activity for removing various pollutants from water.
Authors Y. Chang; Z. Liu; X. Shen; B. Zhu; D.K. Macharia; Z. Chen; L. Zhang
Journal J Hazard Mater
DOI 10.1016/j.jhazmat.2017.10.040
Abstract

Herein we have developed Au nanoparticle-decorated carbon nitride (Au-CN) nanorods as novel and efficient photocatalysts. Au-CN with different Au/CN precursor molar ratios (0.5%, 1% and 2%) have been prepared by a solvothermal-hydrothermal two-step method, where CN nanorods have diameters of 20-30nm and length of 0.5-1?m while Au nanoparticle have diameter of ?13nm. Au-CN nanorods exhibit a broad photoabsorption from ultraviolet to near-infrared with edge at ?790nm, revealing an obvious red-shift compared with g-C3N4 bulk (?460nm), CN nanorods (?715nm). Under visible-light irradiation, 1%Au-CN nanorods exhibit the highest photocatalytic activity, and they can degrade 98.2% rhodamine B (RhB), 77.2% 4-chlorophenol (4-CP), 83.9% tetracycline (TC) and reduce 43.6% hexavalent chromium (Cr(VI)) in 120min, higher than those by pure CN nanorods (70.3% RhB, 36.6% 4-CP, 54.6% TC, 23.1% Cr(VI)) and g-C3N4 bulk (31.5% RhB, 17.2% 4-CP, 36.9% TC, 11.8% Cr(VI)). Compared with CN nanorods, the obvious improvement of photocatalytic activity of 1%Au-CN nanorods should be attributed to the plasmon-enhanced photoabsorption and efficient separation of hole-electron pairs due to the introduction of Au nanoparticles.

Citation Y. Chang; Z. Liu; X. Shen; B. Zhu; D.K. Macharia; Z. Chen; L. Zhang.Synthesis of Au nanoparticle-decorated carbon nitride nanorods with plasmon-enhanced photoabsorption and photocatalytic activity for removing various pollutants from water.. J Hazard Mater. 2018;344:11881197. doi:10.1016/j.jhazmat.2017.10.040

Related Elements

Carbon

See more Carbon products. Carbon (atomic symbol: C, atomic number: 6) is a Block P, Group 14, Period 2 element. Carbon Bohr ModelThe number of electrons in each of Carbon's shells is 2, 4 and its electron configuration is [He]2s2 2p2. In its elemental form, carbon can take various physical forms (known as allotropes) based on the type of bonds between carbon atoms; the most well known allotropes are diamond, graphite, amorphous carbon, glassy carbon, and nanostructured forms such as carbon nanotubes, fullerenes, and nanofibers . Carbon is at the same time one of the softest (as graphite) and hardest (as diamond) materials found in nature. It is the 15th most abundant element in the Earth's crust, and the fourth most abundant element (by mass) in the universe after hydrogen, helium, and oxygen. Carbon was discovered by the Egyptians and Sumerians circa 3750 BC. It was first recognized as an element by Antoine Lavoisier in 1789.

Nitrogen

See more Nitrogen products. Nitrogen is a Block P, Group 15, Period 2 element. Its electron configuration is [He]2s22p3. Nitrogen is an odorless, tasteless, colorless and mostly inert gas. It is the seventh most abundant element in the universe and it constitutes 78.09% (by volume) of Earth's atmosphere. Nitrogen was discovered by Daniel Rutherford in 1772.

Silver

See more Silver products. Silver (atomic symbol: Ag, atomic number: 47) is a Block D, Group 11, Period 5 element with an atomic weight of 107.8682. Silver Bohr ModelThe number of electrons in each of Silver's shells is 2, 8, 18, 18, 1 and its electron configuration is [Kr]4d10 5s1. The silver atom has a radius of 144 pm and a Van der Waals radius of 203 pm. Silver was first discovered by Early Man prior to 5000 BC. In its elemental form, silver has a brilliant white metallic luster. Elemental SilverIt is a little harder than gold and is very ductile and malleable, being exceeded only by gold and perhaps palladium. Pure silver has the highest electrical and thermal conductivity of all metals and possesses the lowest contact resistance. It is stable in pure air and water, but tarnishes when exposed to ozone, hydrogen sulfide, or air containing sulfur. It is found in copper, copper-nickel, lead, and lead-zinc ores, among others. Silver was named after the Anglo-Saxon word "seolfor" or "siolfur," meaning 'silver'.

Related Forms & Applications