Effect of cation dopants in zirconia on interfacial properties in nickel/zirconia systems: an atomistic modeling study.

Title Effect of cation dopants in zirconia on interfacial properties in nickel/zirconia systems: an atomistic modeling study.
Authors A.M. Iskandarov; Y. Ding; Y. Umeno
Journal J Phys Condens Matter
DOI 10.1088/1361-648X/29/4/045001
Abstract

Cation doping is often used to stabilize the cubic or tetragonal phase of zirconia for enhanced thermomechanical and electrochemical properties. In the present paper we report a combined density functional theory (DFT) and molecular dynamics study of the effect of Sc, Y, and Ce dopants on properties of Ni/ interfaces and nickel sintering. First, we develop an MD model that is based on DFT data for various nickel/zirconia interfaces. Then, we employ the model to simulate Ni nanoparticles coalescing on a zirconia surface. The results show the possibility of particle migration by means of fast sliding over the surface when the work of separation is small (<). The sliding observed for the O-terminated Ni(1?1?1)/(1?1?1) interface is not affected by dopants in zirconia because the work of separation of the doped interface stays small. The most pronounced effect of the dopants is observed for the Zr-terminated Ni(1?1?1)/(1?1?1) interface, which possesses a large work of separation () and thus restricts the sliding mechanism of Ni nanoparticle migration. DFT calculations for the interface revealed that dopants with a smaller covalent radius result in a larger energy barriers for Ni diffusion. We analyze this effect and discuss how it can be used to suppress nickel sintering by using the dopant selection.

Citation A.M. Iskandarov; Y. Ding; Y. Umeno.Effect of cation dopants in zirconia on interfacial properties in nickel/zirconia systems: an atomistic modeling study.. J Phys Condens Matter. 2017;29(4):045001. doi:10.1088/1361-648X/29/4/045001

Related Elements

Nickel

See more Nickel products. Nickel (atomic symbol: Ni, atomic number: 28) is a Block D, Group 4, Period 4 element with an atomic weight of 58.6934. Nickel Bohr ModelThe number of electrons in each of nickel's shells is [2, 8, 16, 2] and its electron configuration is [Ar]3d8 4s2. Nickel was first discovered by Alex Constedt in 1751. The nickel atom has a radius of 124 pm and a Van der Waals radius of 184 pm. In its elemental form, nickel has a lustrous metallic silver appearance. Nickel is a hard and ductile transition metal that is considered corrosion-resistant because of its slow rate of oxidation. Elemental NickelIt is one of four elements that are ferromagnetic and is used in the production of various type of magnets for commercial use. Nickel is sometimes found free in nature but is more commonly found in ores. The bulk of mined nickel comes from laterite and magmatic sulfide ores. The name originates from the German word kupfernickel, which means "false copper" from the illusory copper color of the ore.

Zirconium

See more Zirconium products. Zirconium (atomic symbol: Zr, atomic number: 40) is a Block D, Group 4, Period 5 element with an atomic weight of 91.224. Zirconium Bohr ModelThe number of electrons in each of Zirconium's shells is 2, 8, 18, 10, 2 and its electron configuration is [Kr]4d2 5s2. The zirconium atom has a radius of 160 pm and a Van der Waals radius of 186 pm. Zirconium was discovered by Martin Heinrich Klaproth in 1789 and first isolated by Jöns Jakob Berzelius in 1824. In its elemental form, zirconium has a silvery white appearance that is similar to titanium. Zirconium's principal mineral is zircon (zirconium silicate). Elemental ZirconiumZirconium is commercially produced as a byproduct of titanium and tin mining and has many applications as a opacifier and a refractory material. It is not found in nature as a free element. The name of zirconium comes from the mineral zircon, the most important source of zirconium, and from the Persian wordzargun, meaning gold-like.

Related Forms & Applications