Oral supplementation of Lanthanum Zirconate nanoparticles moderately affected behavior but drastically disturbed leukocyte count, serum cholesterol levels and antioxidant parameters from vital organs of albino mice in a gender specific manner.

Title Oral supplementation of Lanthanum Zirconate nanoparticles moderately affected behavior but drastically disturbed leukocyte count, serum cholesterol levels and antioxidant parameters from vital organs of albino mice in a gender specific manner.
Authors M.Nazar Aftab; I.Naz Akram; T. Khosa; S.Qandeel Zahra; I. Bashir; M.Naeem Ashiq; F. Iqbal
Journal Metab Brain Dis
DOI 10.1007/s11011-018-0248-9
Abstract

Lanthanum Zirconate nanoparticles (NPs) are used in blades of gas turbine engines to thermally insulate them and to protect them against hot and corrosive gas streams. However, the information regarding their biocompatibility is limited. The present study was aimed to report the effect of Lanthanum Zirconate NPs on selected aspects of behavior, serum biochemistry, complete blood count and antioxidant parameters from vital organs of albino mice in a gender specific manner. Albino mice, seven weeks old, were orally treated with 75 mg/ml solvent/Kg body weight of Lanthanum Zirconate nanoparticles for consecutive 22 days. Saline treated control groups were maintained in parallel. It was observed that rearing frequency was significantly decreased (P =?0.01) in NPs treated male mice. Complete blood count analysis indicated that NPs treated female mice had significantly reduced white blood cells (P =?0.05) and lymphocytes count (P =?0.03). NPs treated male had significantly reduced serum cholesterol levels (P =?0.05) than control group. It was observed that Superoxide dismutase concentrations in liver (P?=?0.025) and kidney (P?=?0.008), Malondialdehyde concentrations in liver (P =?0.044) of female and Malondialdehyde concentrations in kidney (P 

Citation M.Nazar Aftab; I.Naz Akram; T. Khosa; S.Qandeel Zahra; I. Bashir; M.Naeem Ashiq; F. Iqbal.Oral supplementation of Lanthanum Zirconate nanoparticles moderately affected behavior but drastically disturbed leukocyte count, serum cholesterol levels and antioxidant parameters from vital organs of albino mice in a gender specific manner.. Metab Brain Dis. 2018;33(5):14211429. doi:10.1007/s11011-018-0248-9

Related Elements

Samarium

See more Samarium products. Samarium (atomic symbol: Sm, atomic number: 62) is a Block F, Group 3, Period 6 element with an atomic radius of 150.36. Samarium Bohr ModelThe number of electrons in each of samarium's shells is 2, 8, 18, 24, 8, 2 and its electron configuration is [Xe]4f6 6s2. The samarium atom has a radius of 180 pm and a Van der Waals radius of 229 pm. In its elemental form, samarium has a silvery-white appearance. Elemental Samarium PictureSamarium is not found as free element in nature. It is found in the minerals cerite, gadolinite, samarskite, monazite and bastnäsite. Samarium is classified as a rare earth element and is the 40th most abundant element in the Earth's crust. Samarium was discovered and first isolated by Lecoq de Boisbaudran in 1879. It is named after the mineral samarskite, the mineral from which it was isolated.

Lanthanum

See more Lanthanum products. Lanthanum (atomic symbol: La, atomic number: 57) is a Block F, Group 3, Period 6 element with an atomic weight of 138.90547. Lanthanum Bohr ModelThe number of electrons in each of lanthanum's shells is [2, 8, 18, 18, 9, 2] and its electron configuration is [Xe] 5d1 6s2. The lanthanum atom has a radius of 187 pm and a Van der Waals radius of 240 pm. Lanthanum was first discovered by Carl Mosander in 1838. In its elemental form, lanthanum has a silvery white appearance.Elemental Lanthanum It is a soft, malleable, and ductile metal that oxidizes easily in air. Lanthanum is the first element in the rare earth or lanthanide series. It is the model for all the other trivalent rare earths and it is the second most abundant of the rare earths after cerium. Lanthanum is found in minerals such as monazite and bastnasite. The name lanthanum originates from the Greek word Lanthaneia, which means 'to lie hidden'.

Zirconium

See more Zirconium products. Zirconium (atomic symbol: Zr, atomic number: 40) is a Block D, Group 4, Period 5 element with an atomic weight of 91.224. Zirconium Bohr ModelThe number of electrons in each of Zirconium's shells is 2, 8, 18, 10, 2 and its electron configuration is [Kr]4d2 5s2. The zirconium atom has a radius of 160 pm and a Van der Waals radius of 186 pm. Zirconium was discovered by Martin Heinrich Klaproth in 1789 and first isolated by Jöns Jakob Berzelius in 1824. In its elemental form, zirconium has a silvery white appearance that is similar to titanium. Zirconium's principal mineral is zircon (zirconium silicate). Elemental ZirconiumZirconium is commercially produced as a byproduct of titanium and tin mining and has many applications as a opacifier and a refractory material. It is not found in nature as a free element. The name of zirconium comes from the mineral zircon, the most important source of zirconium, and from the Persian wordzargun, meaning gold-like.

Related Forms & Applications