Application of aluminum chloride phthalocyanine-loaded solid lipid nanoparticles for photodynamic inactivation of melanoma cells.

Author(s) Goto, P.L.; Siqueira-Moura, M.P.; Tedesco, A.C.
Journal Int J Pharm
Date Published 2017 Feb 25

Cutaneous melanoma is the most aggressive skin cancer and is particularly resistant to current therapeutic approaches. Photodynamic therapy (PDT) is a well-established photoprocess that is employed to treat some cancers, including non-melanoma skin cancer. Aluminum chloride phthalocyanine (ClAlPc) is used as a photosensitizer in PDT; however, its high hydrophobicity hampers its photodynamic activity under physiological conditions. The aim of this study was to produce solid lipid nanoparticles (SLN) containing ClAlPc using the direct emulsification method. ClAlPc-loaded SLNs (ClAlPc/SLNs) were characterized according to their particle size and distribution, zeta potential, morphology, encapsulation efficiency, stability, and phototoxic action in vitro in B16-F10 melanoma cells. ClAlPc/SLN had a mean diameter between 100 and 200nm, homogeneous size distribution (polydispersity index <0.3), negative zeta potential, and spherical morphology. The encapsulation efficiency was approximately 100%. The lipid crystallinity was investigated using X-ray diffraction and differential scanning calorimetry and indicated that ClAlPc was integrated into the SLN matrix. The ClAlPc/SLN formulations maintained their physicochemical stability without expelling the drug over a 24-month period. Compared to free ClAlPc, ClAlPc/SLN exerted outstanding phototoxicity effects in vitro against melanoma cells. Therefore, our results demonstrated that the ClAlPc/SLN described in the current study has the potential for use in further preclinical and clinical trials in PDT for melanoma treatment.

DOI 10.1016/j.ijpharm.2017.01.004
ISSN 1873-3476
Citation Int J Pharm. 2017;518(1-2):228241.

Related Applications, Forms & Industries