Author(s) Huang, X.; Andina, D.; Ge, J.; Labarre, A.; Leroux, J.C.; Castagner, B.
Journal ACS Appl Mater Interfaces
Date Published 2017 Mar 29
Abstract

Calcium phosphate (CaP) nanoparticles are promising gene delivery carriers due to their bioresorbability, ease of preparation, high gene loading efficacy, and endosomal escape properties. However, the rapid aggregation of the particles needs to be addressed in order to have potential in vivo. In addition, there is a need to better understand the relationship between CaP nanoparticle properties and their interactions with cells. Here, a new synthesis route involving click chemistry was developed to prepare the PEGylated chelator PEG-inositol 1,3,4,5,6-pentakisphosphate (PEG-IP5) that can coat and stabilize CaP nanoparticles. Two methods (1 and 2) differing on the time of addition of the PEGylated chelator were employed to produce stabilized particles. Method 1 yielded amorphous aggregated spheres with a particle size of about 200 nm, whereas method 2 yielded 40 nm amorphous loose aggregates of clusters, which were quickly turned into needle bundle-like crystals of about 80 nm in a few hours. Nanoparticles prepared by method 1 were internalized with significantly higher efficiency in HepG2 cells than those prepared by method 2, and the uptake was dramatically influenced by the reaction time of Ca(2+) and PO4(3-) and sedimentation of the particles. Interestingly, morphological transformations were observed for both types of particles after different storage times, but this barely influenced their in vitro cellular uptake. The transfection efficiency of the particles prepared by method 1 was significantly higher, and none of the formulations tested showed signs of cytotoxicity. This study provides a better understanding of the properties (e.g., size, morphology, and crystallinity) of PEGylated CaP nanoparticles and how these influence the particles' in vitro uptake and transfection efficiency.

DOI 10.1021/acsami.6b15925
ISSN 1944-8252
Citation ACS Appl Mater Interfaces. 2017;9(12):1043510445.

Related Applications, Forms & Industries