Electrochemical sensor based on palladium-reduced graphene oxide modified with gold nanoparticles for simultaneous determination of acetaminophen and 4-aminophenol.

Author(s) Wang, H.; Zhang, S.; Li, S.; Qu, J.
Journal Talanta
Date Published 2018 Feb 01
Abstract

Herein, a newly developed electrochemical sensor base on the nanohybrid of palladium-reduced graphene oxide modified with gold nanoparticles (Au/Pd/rGO) was established, which was prepared by electrodeposing Au nanoparticles on Pd/rGO modified on a glass carbon electrode. The morphologies and microstructures of the as-prepared nanohybrid were characterized by X-ray photoelectron spectroscopy, Scanning electron microscopy and Infrared spectroscopy. And, experiment results showed that the prepared Au/Pd/rGO nanohybrid exhibited excellent electrocatalytic- activity toward the redox of acetaminophen (PA) and 4-aminophenol (4-AP) simultaneously. The linear detection ranges were 1.00-250.00μM for PA and 1.00-300.00μM for 4-AP, with the detection limits of 0.30μM for PA and 0.12μM for 4-AP, respectively. Because of the excellent performance of lower detection, wider linear range and better selectivity, the prepared Au/Pd/rGO nanohybrid with more potential applications was a promising candidate for advanced electrode material in electrochemical sensing field.

DOI 10.1016/j.talanta.2017.09.021
ISSN 1873-3573
Citation Wang H, Zhang S, Li S, Qu J. Electrochemical sensor based on palladium-reduced graphene oxide modified with gold nanoparticles for simultaneous determination of acetaminophen and 4-aminophenol. Talanta. 2018;178:188-194.

Related Applications, Forms & Industries