Enhanced visible light activated hydrogen evolution activity over cadmium sulfide nanorods by the synergetic effect of a thin carbon layer and noble metal-free nickel phosphide cocatalyst.

Author(s) Wu, T.; Wang, P.; Ao, Y.; Wang, C.
Journal J Colloid Interface Sci
Date Published 2018 Sep 01

Photocatalytic water splitting is considered to be a promising strategy for addressing the global energy crisis through the expanded use of solar energy. Herein, cadmium sulfide (CdS) nanorods modified with a thin conductive carbon layer and a nickel phosphide co-catalyst, referred to as cadmium sulfide coated with a carbon layer and nickel phosphide (CdS@C/NiP, where @ indicates a core-shell structure), were synthesized and applied as a novel composite photocatalyst for water splitting. The optimized CdS@C/NiP composite showed a high photocatalytic hydrogen generation rate of 32030 μmol h g, which was approximately 19 times as high as that of pure CdS. We believed that the thin carbon layer acted as an electron acceptor to promote charge transfer and protect the CdS nanorods from photocorrosion. In addition, the surface loading of the nickel phosphide (NiP) cocatalyst was able to further draw photogenerated electrons from the cadmium sulfide coated with a carbon layer (CdS@C) heterojunction and provide active sites for hydrogen evolution. Thus, greatly enhanced hydrogen generation was achieved through a combination of carbon coating and surface cocatalyst loading. This development provides a new way to design composite photocatalysts with multiple junctions for efficient water splitting performance.

DOI 10.1016/j.jcis.2018.04.068
ISSN 1095-7103
Citation J Colloid Interface Sci. 2018;525:107114.

Related Applications, Forms & Industries