In-situ growth of 3D rosette-like copper nanoparticles on carbon cloth for enhanced sensing of ammonia based on copper electrodissolution.

Author(s) Yang, S.; Zang, G.; Peng, Q.; Fan, J.; Liu, Y.; Zhang, G.; Zhao, Y.; Li, H.; Zhang, Y.
Journal Anal Chim Acta
Date Published 2020 Apr 01
Abstract

Copper is an attractive candidate for sensing ammonia. Here, an electrodissolution mechanism for measuring liquid-phase ammonia was developed via a novel three-dimensional rosette-like structure of copper nanoparticles (CuNPs) integrated onto carbon cloth (CuNPs/CC). A one-step hydrothermal synthetic procedure was employed to construct the metallic CuNPs with a stereo rosette-like pattern on flexible CC substrate. The morphology, composition and sensing performance of the as-prepared composite were characterised in detail. The CuNPs/CC composite showed excellent sensing performance to ammonia, which is attributed to the electrodissolution of CuNPs being promoted by ammonia to form a stabilised copper-ammonia complex. This electrochemical response occurs without the electro-oxidation of ammonia, thus avoiding the energy barrier of the N-N bond and the toxicity of N-adsorbates, which is advantageous for ammonia detection. In addition, the sensor also shows very high sensitivity to ammonia with a low detection limit, as well as good anti-interference performance, repeatability and stability. The high accuracy and precision for the quantification of ammonia concentration in a variety of real samples indicate that the CuNPs/CC composition has potential in the development of high-performance ammonia sensors.

DOI 10.1016/j.aca.2020.01.010
ISSN 1873-4324
Citation Anal Chim Acta. 2020;1104:6068.

Related Applications, Forms & Industries