Interaction of graphene oxide with co-existing arsenite and arsenate: Adsorption, transformation and combined toxicity.

Author(s) Cao, X.; Ma, C.; Zhao, J.; Musante, C.; White, J.C.; Wang, Z.; Xing, B.
Journal Environ Int
Date Published 2019 Jul 06

The outstanding commercial application potential of graphene oxide (GO) will inevitably lead to its increasing release into the environment, and then affect the environmental behavior and toxicity of conventional pollutants. Interactions between arsenite [As (III)]/arsenate [As (V)] with GO and their combined toxicity to Chlorella pyrenoidosa were investigated. Under abiotic conditions, approximately 42% of the adsorbed As (III) was oxidized by GO with simulated sunlight illumination, which was induced by electron-hole pairs on the surface of GO. Co-exposure with GO greatly enhanced the toxicity of As (III, V) to alga. When adding 10 mg/L GO, the 72 h median effect concentration of As (III) and As (V) to C. pyrendoidosa decreased to 12.7 and 9.4 mg/L from 30.1 and 16.3 mg/L in the As alone treatment, respectively. One possible mechanism by which GO enhanced As toxicity could be that GO decreased the phosphate concentration in the algal medium, and then increased the accumulation of As (V) in algae. In addition, transmission electron microscope (TEM) images demonstrated that GO acted as a carrier for As (III) and As (V) transport into the algal cells. Also, GO induced severe oxidative stress, which could have subsequently compromised important detoxification pathways (e.g., As complexation with glutathione, As methylation, and intracellular As efflux) in the algal cells. Our findings highlight the significant impact of GO on the fate and toxicity of As in the aquatic environment.

DOI 10.1016/j.envint.2019.104992
ISSN 1873-6750
Citation Environ Int. 2019;131:104992.

Related Applications, Forms & Industries