Metal oxyanion removal from wastewater using manganese-oxidizing aerobic granular sludge.

Author(s) He, Z.; Wei, Z.; Zhang, Q.; Zou, J.; Pan, X.
Journal Chemosphere
Date Published 2019 Dec
Abstract

As, Sb, and Cr are redox-sensitive and toxic heavy metal(loid)s, and redox reactions are usually involved in the treatment of substrates containing these elements. In this study, manganese-oxidizing aerobic granular sludge (Mn-AGS) was obtained by continuously adding Mn(II) to the sludge in a sequencing batch reactor (SBR). Morphological observations, and analyses of extracellular polymeric substances (EPS), Mn valence-states, and microbial communities were performed on the resulting sludge. After 50 days of cultivation, biogenic Mn(III,IV) oxides (bio-MnO) accumulated up to approximately 25 mg Mn/g suspended solids (SS). X-ray photoelectron spectroscopy (XPS) revealed that the percentage of Mn(III,IV) was 87.6%. The protein (PN) component in EPS increased from 80.3 to 87.8 mg/g volatile suspended solids (VSS) during cultivation, which might be favorable for sludge granulation and heavy metal(loid) removal. Batch experiments showed that Mn-AGS was better at oxidizing As(III)/Sb(III) into less toxic As(V)/Sb(V) than traditional AGS. Remarkably, the results indicated that Mn-AGS did not oxidize Cr(III) but was able to reduce Cr(VI) into relatively harmless Cr(III). This work provided a new promising method with which to treat As(III), Sb(III), and Cr(VI) in wastewaters.

DOI 10.1016/j.chemosphere.2019.124353
ISSN 1879-1298
Citation He Z, Wei Z, Zhang Q, Zou J, Pan X. Metal oxyanion removal from wastewater using manganese-oxidizing aerobic granular sludge. Chemosphere. 2019;236:124353.