Author(s) James, E.; Turner, A.
Journal Environ Pollut
Date Published 2020 May 01
Abstract

Antimony (Sb) widely occurs in plastics as a pigment and reaction residue and through the use and recycling of electronic material enriched in Sb as a flame retardant synergist. In this study, clean estuarine sediment has been contaminated by different microplastics prepared from pre-characterised samples of different types of plastic (including a rubber) containing a range of Sb concentrations (256-47,600 μg g). Sediment-plastic mixtures in a mass ratio of 100:1 were subject to 6-h extractions in seawater and in seawater solutions of a protein (bovine serum albumin; BSA) and a surfactant (taurocholic acid; TA) that mimic the digestive conditions of coastal deposit-feeding invertebrates. Most time-courses for Sb mobilisation could be defined by a second-order diffusion equation, with rate constants ranging from 44.6 to 0.0216 (μg g) min. Bioaccessibilities, defined as maximum extractable concentrations throughout each time course relative to total Sb content, ranged from <0.01% for a polycarbonate impregnated with Sb as a synergist exposed to all solutions, to >1% for acrylonitrile butadiene styrene containing a Sb-based colour pigment exposed to solutions of BSA and TA and recycled industrial polyethylene exposed to BSA solution. The potential for Sb to bioaccumulate or elicit a toxic effect is unknown but it is predicted that communities of deposit-feeders could mobilise significant quantities of Sb in sediment contaminated by microplastics through bioturbation and digestion.

DOI 10.1016/j.envpol.2020.114696
ISSN 1873-6424
Citation James E, Turner A. Mobilisation of antimony from microplastics added to coastal sediment. Environ Pollut. 2020;264:114696.