Phytotoxicity assays with hydroxyapatite nanoparticles lead the way to recover firing range soils.

Author(s) Lago-Vila, M.; Rodríguez-Seijo, A.; Vega, F.A.; Arenas-Lago, D.
Journal Sci Total Environ
Date Published 2019 Nov 10

Shooting activities is an important source of Pb in contaminated soils. Lead accumulates in superficial soil horizons because of its low mobility, favouring its uptake by plants and representing a high transference risk to the trophic chain. A combination of phytoremediation with nanoremediation techniques can be used to recover firing range soils and decrease the mobility, bioavailability and toxicity of Pb. This study examines in depth the changes in Pb behaviour in firing range soils by adding hydroxyapatite nanoparticles (HANPs). These nanoparticles (NPs) may immobilise Pb and improve the quality of these areas. The use of HANPs and the Pb effects were assessed in three different species (Sinapis alba L., Lactuca sativa L. and Festuca ovina L.), focusing on their germination and early growth, through phytotoxicity assays. Single extractions with CaCl (0.01 M) in soils treated with HANPs show that these NPs retained Pb and reduced highly its availability and mobility. HR-TEM and TOF-SIMS were used to determine the interactions between HANPs and Pb, as well as with soil components. According to TOF-SIMS and HR-TEM/EDS analysis, Pb was mainly retained by HANPs but also associated lightly to organic matter, Fe compounds and silicates. Phytotoxicity assays exposed that S. alba, L. sativa and F. ovina were able to germinate and develop in the firing range soils despite the high available Pb contents before adding HANPs. After adding HANPs, Pb retention increased, favouring the germination and the growth of roots in the three species. These results suggest that HANPs can be used to decrease the availability and the toxicity of Pb without negative effects in the species growth. Accordingly, the combination of phytoremediation and nanoremediation techniques can be a great tool to stabilise these soils, avoiding the Pb transfer to nearby areas and its entry in the trophic chain.

DOI 10.1016/j.scitotenv.2019.06.496
ISSN 1879-1026
Citation Sci Total Environ. 2019;690:11511161.

Related Applications, Forms & Industries