Targeted tumor dual mode CT/MR imaging using multifunctional polyethylenimine-entrapped gold nanoparticles loaded with gadolinium.

Title Targeted tumor dual mode CT/MR imaging using multifunctional polyethylenimine-entrapped gold nanoparticles loaded with gadolinium.
Authors B. Zhou; Z. Xiong; P. Wang; C. Peng; M. Shen; S. Mignani; J.P. Majoral; X. Shi
Journal Drug Deliv
DOI 10.1080/10717544.2017.1422299
Abstract

We report the construction and characterization of polyethylenimine (PEI)-entrapped gold nanoparticles (AuNPs) chelated with gadolinium (Gd) ions for targeted dual mode tumor CT/MR imaging in vivo. In this work, polyethylene glycol (PEG) monomethyl ether-modified PEI was sequentially modified with Gd chelator and folic acid (FA)-linked PEG (FA-PEG) was used as a template to synthesize AuNPs, followed by Gd(III) chelation and acetylation of the remaining PEI surface amines. The formed FA-targeted PEI-entrapped AuNPs loaded with Gd (FA-Gd-Au PENPs) were well characterized in terms of structure, composition, morphology, and size distribution. We show that the FA-Gd-Au PENPs with an Au core size of 3.0?nm are water dispersible, colloidally stable, and noncytotoxic in a given concentration range. Thanks to the coexistence of Au and Gd elements within one nanoparticulate system, the FA-Gd-Au PENPs display a better X-ray attenuation property than clinical iodinated contrast agent (e.g. Omnipaque) and reasonable r relaxivity (1.1?mMs). These properties allow the FA-targeted particles to be used as an efficient nanoprobe for dual mode CT/MR imaging of tumors with excellent FA-mediated targeting specificity. With the demonstrated organ biocompatibility, the designed FA-Gd-Au PENPs may hold a great promise to be used as a nanoprobe for CT/MR dual mode imaging of different FA receptor-overexpressing tumors.

Citation B. Zhou; Z. Xiong; P. Wang; C. Peng; M. Shen; S. Mignani; J.P. Majoral; X. Shi.Targeted tumor dual mode CT/MR imaging using multifunctional polyethylenimine-entrapped gold nanoparticles loaded with gadolinium.. Drug Deliv. 2018;25(1):178186. doi:10.1080/10717544.2017.1422299

Related Elements

Gold

See more Gold products. Gold (atomic symbol: Au, atomic number: 79) is a Block D, Group 11, Period 6 element with an atomic weight of 196.966569. The number of electrons in each of Gold's shells is 2, 8, 18, 32, 18, 1 and its electron configuration is [Xe]4f142 5d10 6s1. Gold Bohr ModelThe gold atom has a radius of 144 pm and a Van der Waals radius of 217 pm. Gold was first discovered by Early Man prior to 6000 B.C. In its elemental form, gold has a metallic yellow appearance. Gold is a soft metal and is usually alloyed to give it more strength.Elemental Gold It is a good conductor of heat and electricity, and is unaffected by air and most reagents. It is one of the least reactive chemical elements. Gold is often found as a free element and with silver as a gold-silver alloy. Less commonly, it is found in minerals as gold compounds, usually with tellurium.

Gadolinium

See more Gadolinium products. Gadolinium (atomic symbol: Gd, atomic number: 64) is a Block F, Group 3, Period 6 element with an atomic radius of 157.25. Gadolinium Bohr ModelThe number of electrons in each of Gadolinium's shells is [2, 8, 18, 25, 9, 2] and its electron configuration is [Xe] 4f7 5d1 6s2. The gadolinium atom has a radius of 180 pm and a Van der Waals radius of 237 pm. Gadolinium was discovered by Jean Charles Galissard de Marignac in 1880 and first isolated by Lecoq de Boisbaudran in 1886. In its elemental form, gadolinium has a silvery-white appearance. Gadolinium is a rare earth or lanthanide element that possesses unique properties advantageous to specialized applications such as semiconductor fabrication and nuclear reactor shielding. Elemental Gadolinium PictureIt is utilized for both its high magnetic moment (7.94μ B) and in phosphors and scintillator crystals. When complexed with EDTA ligands, it is used as an injectable contrast agent for MRIs. The element is named after the Finnish chemist and geologist Johan Gadolin.

Related Forms & Applications