Yttrium Aluminum Garnet doped Thulium

Tm:YAG

Linear Formula:

Tm:Y3Al5O12

ORDER

PRODUCT Product Code ORDER SAFETY DATA TECHNICAL DATA
(2N) 99% Yttrium Aluminum Garnet doped Thulium (Tm:YAG)
TM-YAG-02-C
Pricing > SDS > Data Sheet >
(3N) 99.9% Yttrium Aluminum Garnet doped Thulium (Tm:YAG)
TM-YAG-03-C
Pricing > SDS > Data Sheet >
(4N) 99.99% Yttrium Aluminum Garnet doped Thulium (Tm:YAG)
TM-YAG-04-C
Pricing > SDS > Data Sheet >
(5N) 99.999% Yttrium Aluminum Garnet doped Thulium (Tm:YAG)
TM-YAG-05-C
Pricing > SDS > Data Sheet >

Yttrium Aluminum Garnet doped Thulium Properties (Theoretical)

Appearance Solid
Melting Point N/A
Boiling Point N/A
Density N/A
Solubility in H2O N/A

Yttrium Aluminum Garnet doped Thulium Health & Safety Information

Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
RTECS Number N/A
Transport Information N/A
MSDS / SDS

About Yttrium Aluminum Garnet doped Thulium

Yttrium Aluminum Garnet doped Thulium is a crystalline solid used in photo optic applications. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting frelevant units of measurement.

Yttrium Aluminum Garnet doped Thulium Synonyms

Tm:YAG, Thulium doped YAG, thulium-doped yttrium aluminum garnet, yttrium aluminum oxide doped with thulium

Chemical Identifiers

Linear Formula Tm:Y3Al5O12
MDL Number N/A
EC No. N/A

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Related Elements

Thulium

See more Thulium products. Thulium (atomic symbol: Tm, atomic number: 69) is a Block F, Group 3, Period 6 element with an atomic weight of 168.93421. Thulium Bohr ModelThe number of electrons in each of Thulium's shells is [2, 8, 18, 31, 8, 2] and its electron configuration is [Xe]4f136s2. The thulium atom has a radius of 176 pm and a Van der Waals radius of 227 pm.Elemental Thulium Picture In its elemental form, thulium has a silvery-gray appearance. Thulium is representative of the other lanthanides (rare earths) and similar in chemistry to yttrium. It is the least abundant of the rare earth elements. Thulium emits blue upon excitation, and is used in flat panel screens that depend critically on bright blue emitters. Thulium was discovered and first isolated by Per Teodor Cleve in 1879. It is named after "Thule," which is the ancient name of Scandinavia.

Yttrium

See more Yttrium products. Yttrium (atomic symbol: Y, atomic number: 39) is a Block D, Group 3, Period 5 element with an atomic weight of 88.90585. Yttrium Bohr ModelThe number of electrons in each of yttrium's shells is [2, 8, 18, 9, 2] and its electron configuration is [Kr] 4d1 5s2. The yttrium atom has a radius of 180 pm and a Van der Waals radius of 219 pm. Yttrium was discovered by Johann Gadolin in 1794 and first isolated by Carl Gustav Mosander in 1840. In its elemental form, Yttrium has a silvery white metallic appearance. Yttrium has the highest thermodynamic affinity for oxygen of any element. Elemental YttriumYttrium is not found in nature as a free element and is almost always found combined with the lanthanides in rare earth minerals. While not part of the rare earth series, it resembles the heavy rare earths which are sometimes referred to as the "yttrics" for this reason. Another unique characteristic derives from its ability to form crystals with useful properties. The name yttrium originated from a Swedish village near Vaxholm called Yttbery where it was discovered.

Aluminum

See more Aluminum products. Aluminum (or Aluminium) (atomic symbol: Al, atomic number: 13) is a Block P, Group 13, Period 3 element with an atomic weight of 26.9815386. It is the third most abundant element in the earth's crust and the most abundant metallic element. Aluminum Bohr Model Aluminum's name is derived from alumina, the mineral from which Sir Humphrey Davy attempted to refine it from in 1812. Aluminum was first predicted by Antoine Lavoisier 1787 and first isolated by Hans Christian Øersted in 1825. Aluminum is a silvery gray metal that possesses many desirable characteristics. It is light, nonmagnetic and non-sparking. It stands second among metals in the scale of malleability, and sixth in ductility. It is extensively used in many industrial applications where a strong, light, easily constructed material is needed. Elemental AluminumAlthough it has only 60% of the electrical conductivity of copper, it is used in electrical transmission lines because of its light weight. Pure aluminum is soft and lacks strength, but alloyed with small amounts of copper, magnesium, silicon, manganese, or other elements, it imparts a variety of useful properties.

Recent Research

TODAY'S TOP DISCOVERY!

October 14, 2024
Los Angeles, CA
Each business day American Elements' scientists & engineers post their choice for the most exciting materials science news of the day
Researchers develop AINU (AI) to detect cancer and viral infections with nanoscale precision

Researchers develop AINU (AI) to detect cancer and viral infections with nanoscale precision