Skip to Page Content

Silver Acetate

AgC2H3O2
CAS 563-63-3


Product Product Code Request Quote
(2N) 99% Silver Acetate AG-AC-02 Request Quote
(3N) 99.9% Silver Acetate AG-AC-03 Request Quote
(4N) 99.99% Silver Acetate AG-AC-04 Request Quote
(5N) 99.999% Silver Acetate AG-AC-05 Request Quote

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
AgC2H3O2 563-63-3 24852259 N/A MFCD00012446 209-254-9 Silver Acetate 3595636 CC(=O)[O-].[Ag+] InChI=1S/C2H4O2.Ag/c1-2(3)4;/h1H3,(H,3,4);/q;+1/p-1 CQLFBEKRDQMJLZ-UHFFFAOYSA-M

PROPERTIES Compound Formula Mol. Wt. Appearance Density Exact Mass Monoisotopic Mass Charge MSDS
C2H3AgO2 166.92 White Powder 3.25 g/cm3 165.918 g/mol 165.918 Da 0 Safety Data Sheet

Acetate Formula StructureSilver Acetate is a moderately water soluble crystalline Silver source that decomposes to Silver oxide on heating. It is generally immediately available in most volumes. All metallic acetates are inorganic salts containing a metal cation and the acetate anion, a univalent (-1 charge) polyatomic ion composed of two carbon atoms ionically bound to three hydrogen and two oxygen atoms (Symbol: CH3COO) for a total formula weight of 59.05. Acetates are excellent precursors for production of ultra high purity compounds, catalysts, and nanoscale materials.We also produce Silver Acetate Solution. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia)and follows applicable ASTM testing standards.Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Silver (Ag)atomic and molecular weight, atomic number and elemental symbolSilver (atomic symbol: Ag, atomic number: 47) is a Block D, Group 11, Period 5 element with an atomic weight of 107.8682. Silver Bohr ModelThe number of electrons in each of Silver's shells is 2, 8, 18, 18, 1 and its electron configuration is [Kr]4d10 5s1. The silver atom has a radius of 144 pm and a Van der Waals radius of 203 pm. Silver was first discovered by Early Man prior to 5000 BC. In its elemental form, silver has a brilliant white metallic luster. Elemental SilverIt is a little harder than gold and is very ductile and malleable, being exceeded only by gold and perhaps palladium. Pure silver has the highest electrical and thermal conductivity of all metals and possesses the lowest contact resistance. It is stable in pure air and water, but tarnishes when exposed to ozone, hydrogen sulfide, or air containing sulfur. It is found in copper, copper-nickel, lead, and lead-zinc ores, among others. Silver was named after the Anglo-Saxon word "seolfor" or "siolfur," meaning 'silver'. For more information on silver, including properties, safety data, research, and American Elements' catalog of silver products, visit the Silver element page.


HEALTH, SAFETY & TRANSPORTATION INFORMATION
Warning
H315-H319-H335-H400
Xi
36/37/38
26-36
AJ4100000
N/A
3
Exclamation Mark-Acute Toxicity •	Environment-Hazardous to the aquatic environment      

SILVER ACETATE SYNONYMS
Silver(1+) acetate, Silver monoacetate, Acetic acid silver salt, Silver ethanoate, Acetic acid, silver (1+) salt


CUSTOMERS FOR SILVER ACETATE HAVE ALSO LOOKED AT
Silver 2-Ethylhexanoate Silver Foil Silver Acetate Silver Metal Silver Chloride
Silver Nanoparticles Silver Oxide Silver Oxide Pellets Silver Pellets Silver Powder
Silver Sheets Silver Sputtering Target Tin Silver Zinc Alloy Gold Silver Copper Alloy Silver Sulfate
Show Me MORE Forms of Silver

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Silver

  • The Environmental Legacy of Copper Metallurgy and Mongol Silver Smelting Recorded in Yunnan Lake Sediments. Aubrey L. Hillman, Mark B. Abbott, JunQing Yu, Daniel J. Bain, and TzeHuey Chiou-Peng. Environ. Sci. Technol.: February 16, 2015
  • Multifunctional Aptamer-Silver Conjugates as Theragnostic Agents for Specific Cancer Cell Therapy and Fluorescence-Enhanced Cell Imaging. Hui Li, Hongting Hu, Yaju Zhao, Xiang Chen, Wei Li, Weibing Qiang, and Danke Xu. Anal. Chem.: February 16, 2015
  • Polysulfone Membranes Modified with Bioinspired Polydopamine and Silver Nanoparticles Formed in situ to Mitigate Biofouling. Li Tang, Kenneth John T. Livi, and Kai Loon Chen. Environ. Sci. Technol. Lett.: February 16, 2015
  • Adsorption of Anionic Thiols on Silver Nanoparticles. Bolei Xu, Grazia Gonella, Brendan G. DeLacy, and Hai-Lung Dai. J. Phys. Chem. C: February 12, 2015
  • Fluoride-Induced Reduction of Ag(I) Leading to Formation of Silver Mirrors and Luminescent Ag-Nanoparticles. Krishnendu Maity, Dillip Kumar Panda, Eric Lochner, and Sourav Saha. J. Am. Chem. Soc.: February 11, 2015
  • Light-responsive plasmonic arrays consisting of silver nanocubes and a photoisomerable matrix. Petr A. Ledin, Michael Russell, Jeffrey A Geldmeier, Ihor Tkachenko, Mahmoud A. Mahmoud, Valery V Shevchenko, Mostafa A. El-Sayed, and Vladimir V. Tsukruk. ACS Appl. Mater. Interfaces: February 11, 2015
  • Theoretical Study on Electroreduction of p-Nitrothiophenol on Silver and Gold Electrode Surfaces. Liu-Bin Zhao, Jia-Li Chen, Meng Zhang, De-Yin Wu, and Zhong-Qun Tian. J. Phys. Chem. C: February 10, 2015
  • High performance low-cost antibody microarrays using enzyme mediated silver amplification. Gina Zhou, Sebastien Bergeron, and David Juncker. J. Proteome Res.: February 10, 2015
  • Biomimetic oxidative coupling of sinapyl acetate by silver oxide: preferential formation of -O-4 type structures. Takao Kishimoto, Nana Takahashi, Masahiro Hamada, and Noriyuki Nakajima. J. Agric. Food Chem.: February 5, 2015
  • Absorption Spectra of Aryl Thiol-Coated Silver Nanoclusters: A Time-Dependent Density-Functional Study. Benjamin Bousquet, Mohamed Cherif, Kunqiang Huang, and Franck Rabilloud. J. Phys. Chem. C: February 4, 2015

Recent Research & Development for Acetate

  • Dissolution Dynamic Nuclear Polarization of Non-Self-Glassing Agents: Spectroscopy and Relaxation of Hyperpolarized [1-13C]Acetate. Alessandra Flori, Matteo Liserani, Sean Bowen, Jan Henrik Ardenkjaer-Larsen, and Luca Menichetti. J. Phys. Chem. A: February 16, 2015
  • Densities at Pressures up to 200 MPa and Atmospheric Pressure Viscosities of Ionic Liquids 1-Ethyl-3-methylimidazolium Methylphosphate, 1-Ethyl-3-methylimidazolium Diethylphosphate, 1-Butyl-3-methylimidazolium Acetate, and 1-Butyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide. Yuya Hiraga, Aya Kato, Yoshiyuki Sato, and Richard L. Smith, Jr. J. Chem. Eng. Data: February 12, 2015
  • Selective Reaction Monitoring of Negative Electrospray Ionization Acetate Adduct Ions for the Bioanalysis of Dapagliflozin in Clinical Studies. Qin C. Ji, Xiahui (Sophia) Xu, Eric Ma, Jane Liu, Shenita Basdeo, Guowen Liu, William Mylott, David W Boulton, Jim X. Shen, Bruce Stouffer, Anne-Francoise Aubry, and Mark E. Arnold. Anal. Chem.: February 11, 2015
  • Biomimetic oxidative coupling of sinapyl acetate by silver oxide: preferential formation of O-4 type structures. Takao Kishimoto, Nana Takahashi, Masahiro Hamada, and Noriyuki Nakajima. J. Agric. Food Chem.: February 5, 2015
  • Quantitative Screening of Agrochemical Residues in Fruits and Vegetables by Buffered Ethyl Acetate Extraction and LC-MS/MS Analysis. Manjusha R. Jadhav, Dasharath P. Oulkar, Ahammed Shabeer T. P., and Kaushik Banerjee. J. Agric. Food Chem.: February 2, 2015
  • Influence of Different Inorganic Salts on the Ionicity and Thermophysical Properties of 1-Ethyl-3-methylimidazolium Acetate Ionic Liquid. Filipe S. Oliveira, Luís P. N. Rebelo, and Isabel M. Marrucho. J. Chem. Eng. Data: January 29, 2015
  • Understanding the Hydrolysis Mechanism of Ethyl Acetate Catalyzed by an Aqueous Molybdocene: A Computational Chemistry Investigation. Elkin Tílvez, Gloria I. Cárdenas-Jirón, María I. Menéndez, and Ramón López. Inorg. Chem.: January 29, 2015
  • Evaluation of CO2-Philicity of Poly(vinyl acetate) and Poly(vinyl acetate-alt-maleate) Copolymers through Molecular Modeling and Dissolution Behavior Measurement. Dongdong Hu, Shaojun Sun, Peiqing Yuan, Ling Zhao, and Tao Liu. J. Phys. Chem. B: January 19, 2015
  • Ionic Liquid Assisted Electrospun Cellulose Acetate Fibers for Aqueous Removal of Triclosan. Gong Zhang, Meng Sun, Yang Liu, Huijuan Liu, Jiuhui Qu, and Jinghong Li. Langmuir: January 16, 2015
  • Kinetic Study and Process Simulation of Transesterification of Methyl Acetate and Isoamyl Alcohol Catalyzed by Ionic Liquid. Zhen Yang, Xianbao Cui, Huimin Jie, Xufeng Yu, Ying Zhang, Tianyang Feng, Huan Liu, and Ke Song. Ind. Eng. Chem. Res.: January 14, 2015