Skip to Page Content

Silver Nickel

AgNi


Product Product Code Request Quote
(2N) 99% Silver Nickel AG-NI-02 Request Quote
(3N) 99.9% Silver Nickel AG-NI-03 Request Quote
(4N) 99.99% Silver Nickel AG-NI-04 Request Quote
(5N) 99.999% Silver Nickel AG-NI-05 Request Quote

Silver Nickel is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopeia/British Pharmacopeia) and follows applicable ASTM testing standards. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Silver (Ag)atomic and molecular weight, atomic number and elemental symbolSilver (atomic symbol: Ag, atomic number: 47) is a Block D, Group 11, Period 5 element with an atomic weight of 107.8682. Silver Bohr ModelThe number of electrons in each of Silver's shells is 2, 8, 18, 18, 1 and its electron configuration is [Kr]4d10 5s1. The silver atom has a radius of 144 pm and a Van der Waals radius of 203 pm. Silver was first discovered by Early Man prior to 5000 BC. In its elemental form, silver has a brilliant white metallic luster. Elemental SilverIt is a little harder than gold and is very ductile and malleable, being exceeded only by gold and perhaps palladium. Pure silver has the highest electrical and thermal conductivity of all metals and possesses the lowest contact resistance. It is stable in pure air and water, but tarnishes when exposed to ozone, hydrogen sulfide, or air containing sulfur. It is found in copper, copper-nickel, lead, and lead-zinc ores, among others. Silver was named after the Anglo-Saxon word "seolfor" or "siolfur," meaning 'silver'. For more information on silver, including properties, safety data, research, and American Elements' catalog of silver products, visit the Silver element page.


Nickel (Ni) atomic and molecular weight, atomic number and elemental symbolNickel (atomic symbol: Ni, atomic number: 28) is a Block D, Group 4, Period 4 element with an atomic weight of 58.6934. Nickel Bohr ModelThe number of electrons in each of nickel's shells is [2, 8, 16, 2] and its electron configuration is [Ar]3d8 4s2. Nickel was first discovered by Alex Constedt in 1751. The nickel atom has a radius of 124 pm and a Van der Waals radius of 184 pm. In its elemental form, nickel has a lustrous metallic silver appearance. Elemental Nickel Nickel is a hard and ductile transition metal that is considered corrosion-resistant because of its slow rate of oxidation. It is one of four elements that are ferromagnetic and is used in the production of various type of magnets for commercial use. Nickel is sometimes found free in nature but is more commonly found in ores. The bulk of mined nickel comes from laterite and magmatic sulfide ores. The name originates from the German word kupfernickel, which means "false copper" from the illusory copper color of the ore. For more information on nickel, including properties, safety data, research, and American Elements' catalog of nickel products, visit the Nickel element page.



CUSTOMERS FOR SILVER NICKEL HAVE ALSO LOOKED AT
Silver 2-Ethylhexanoate Silver Foil Silver Acetate Silver Metal Silver Chloride
Silver Nanoparticles Silver Oxide Silver Oxide Pellets Silver Pellets Silver Powder
Silver Sheets Silver Sputtering Target Tin Silver Zinc Alloy Gold Silver Copper Alloy Silver Sulfate
Show Me MORE Forms of Silver

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Silver

  • The Environmental Legacy of Copper Metallurgy and Mongol Silver Smelting Recorded in Yunnan Lake Sediments. Aubrey L. Hillman, Mark B. Abbott, JunQing Yu, Daniel J. Bain, and TzeHuey Chiou-Peng. Environ. Sci. Technol.: February 16, 2015
  • Multifunctional Aptamer-Silver Conjugates as Theragnostic Agents for Specific Cancer Cell Therapy and Fluorescence-Enhanced Cell Imaging. Hui Li, Hongting Hu, Yaju Zhao, Xiang Chen, Wei Li, Weibing Qiang, and Danke Xu. Anal. Chem.: February 16, 2015
  • Polysulfone Membranes Modified with Bioinspired Polydopamine and Silver Nanoparticles Formed in situ to Mitigate Biofouling. Li Tang, Kenneth John T. Livi, and Kai Loon Chen. Environ. Sci. Technol. Lett.: February 16, 2015
  • Adsorption of Anionic Thiols on Silver Nanoparticles. Bolei Xu, Grazia Gonella, Brendan G. DeLacy, and Hai-Lung Dai. J. Phys. Chem. C: February 12, 2015
  • Fluoride-Induced Reduction of Ag(I) Leading to Formation of Silver Mirrors and Luminescent Ag-Nanoparticles. Krishnendu Maity, Dillip Kumar Panda, Eric Lochner, and Sourav Saha. J. Am. Chem. Soc.: February 11, 2015
  • Light-responsive plasmonic arrays consisting of silver nanocubes and a photoisomerable matrix. Petr A. Ledin, Michael Russell, Jeffrey A Geldmeier, Ihor Tkachenko, Mahmoud A. Mahmoud, Valery V Shevchenko, Mostafa A. El-Sayed, and Vladimir V. Tsukruk. ACS Appl. Mater. Interfaces: February 11, 2015
  • Theoretical Study on Electroreduction of p-Nitrothiophenol on Silver and Gold Electrode Surfaces. Liu-Bin Zhao, Jia-Li Chen, Meng Zhang, De-Yin Wu, and Zhong-Qun Tian. J. Phys. Chem. C: February 10, 2015
  • High performance low-cost antibody microarrays using enzyme mediated silver amplification. Gina Zhou, Sebastien Bergeron, and David Juncker. J. Proteome Res.: February 10, 2015
  • Biomimetic oxidative coupling of sinapyl acetate by silver oxide: preferential formation of -O-4 type structures. Takao Kishimoto, Nana Takahashi, Masahiro Hamada, and Noriyuki Nakajima. J. Agric. Food Chem.: February 5, 2015
  • Absorption Spectra of Aryl Thiol-Coated Silver Nanoclusters: A Time-Dependent Density-Functional Study. Benjamin Bousquet, Mohamed Cherif, Kunqiang Huang, and Franck Rabilloud. J. Phys. Chem. C: February 4, 2015

Recent Research & Development for Nickel

  • Association Model for Nickel and Vanadium with Asphaltene during Solvent Deasphalting. Chuanbo Yu, Linzhou Zhang, Xiuying Guo, Zhiming Xu, Xuewen Sun, Chunming Xu, and Suoqi Zhao. Energy Fuels: February 12, 2015
  • Coke Minimization during Conversion of Biogas to Syngas by Bimetallic Tungsten-Nickel Incorporated Mesoporous Alumina Synthesized by the One-Pot Route. Huseyin Arbag, Sena Yasyerli, Nail Yasyerli, Gulsen Dogu, Timur Dogu, Ilja Gasan Osojnik Crnivec, and Albin Pintar. Ind. Eng. Chem. Res.: February 12, 2015
  • Cleavage of lignin-derived 4-O-5 aryl ethers over nickel nanoparticles supported on niobic acid-activated carbon composites. Shaohua Jin, Zihui Xiao, Xiao Chen, Lei Wang, Jin Guo, Miao Zhang, and Changhai Liang. Ind. Eng. Chem. Res.: February 10, 2015
  • Visible Light Mediated Cyclization of Tertiary Anilines with Maleimides Using Nickel(II) Oxide Surface-Modified Titanium Dioxide Catalyst. Jian Tang, Günter Grampp, Yun Liu, Bing-Xiang Wang, Fei-Fei Tao, Li-Jun Wang, Xue-Zheng Liang, Hui-Quan Xiao, and Yong-Miao Shen. J. Org. Chem.: February 2, 2015
  • Enhancement of Nitrite and Nitrate Electrocatalytic Reduction through the Employment of Self-Assembled Layers of Nickel- and Copper-Substituted Crown-Type Heteropolyanions. Shahzad Imar, Chiara Maccato, Calum Dickinson, et. al. Langmuir: February 2, 2015
  • Selective N-Methylation of Aliphatic Amines with CO2 and Hydrosilanes Using Nickel-Phosphine Catalysts. Lucero González-Sebastián, Marcos Flores-Alamo, and Juventino J. García. Organometallics: January 30, 2015
  • Structural and Chemical Evolution of Amorphous Nickel Iron Complex Hydroxide upon Lithiation/Delithiation. Kai-Yang Niu, Feng Lin, Liang Fang, Dennis Nordlund, Runzhe Tao, Tsu-Chien Weng, Marca Doeff, and Haimei Zheng. Chem. Mater.: January 27, 2015
  • Ab Initio Molecular Dynamics Simulation of Ethylene Reaction on Nickel (111) Surface. Rizal Arifin, Yasushi Shibuta, Kohei Shimamura, Fuyuki Shimojo, and Shu Yamaguchi. J. Phys. Chem. C: January 23, 2015
  • Synthesis, Structure, and Solution Dynamic Behavior of Nickel Complexes Bearing a 1,3-Diallyl-Substituted NHC Ligand. Agata Wodarska, Andrzej Kozio, Maciej Dranka, Adam Gryff-Keller, Przemysaw Szczeciski, Jakub Jurkowski, and Antoni Pietrzykowski. Organometallics: January 22, 2015
  • Synthesis and Characterization of Ferrocene-Chelating Heteroscorpionate Complexes of Nickel(II) and Zinc(II). Mark Abubekerov and Paula L. Diaconescu. Inorg. Chem.: January 21, 2015