Gold-loaded nanoporous ferric oxide nanocubes for electrocatalytic detection of microRNA at attomolar level.

Title Gold-loaded nanoporous ferric oxide nanocubes for electrocatalytic detection of microRNA at attomolar level.
Authors M.Nazmul Islam; M.Kamal Masud; N.T. Nguyen; V. Gopalan; H.R. Alamri; Z.A. Alothman; M.Shahriar A. Hossain; Y. Yamauchi; A.K. Lamd; M.J.A. Shiddiky
Journal Biosens Bioelectron
DOI 10.1016/j.bios.2017.09.027
Abstract

A crucial issue in microRNA (miRNA) detection is the lack of sensitive method capable of detecting the low levels of miRNA in RNA samples. Herein, we present a sensitive and specific method for the electrocatalytic detection of miR-107 using gold-loaded nanoporous superparamagnetic iron oxide nanocubes (Au-NPFe2O3NC). The target miRNA was directly adsorbed onto the gold surfaces of Au-NPFe2O3NC via gold-RNA affinity interaction. The electrocatalytic activity of Au-NPFe2O3NC was then used for the reduction of ruthenium hexaammine(III) chloride (RuHex, [Ru(NH3)6]3+) bound with target miRNA. The catalytic signal was further amplified by using the ferri/ferrocyanide [Fe(CN)6]3-/4- system. These multiple signal enhancement steps enable our assay to achieve the detection limit of 100aM which is several orders of magnitudes better than most of the conventional miRNA sensors. The method was also successfully applied to detect miR-107 from cancer cell lines and a panel of tissue samples derived from patients with oesophageal squamous cell carcinoma with excellent reproducibility (% RSD = < 5%, for n = 3) and high specificity. The analytical accuracy of the method was validated with a standard RT-qPCR method. We believe that our method has the high translational potential for screening miRNAs in clinical samples.

Citation M.Nazmul Islam; M.Kamal Masud; N.T. Nguyen; V. Gopalan; H.R. Alamri; Z.A. Alothman; M.Shahriar A. Hossain; Y. Yamauchi; A.K. Lamd; M.J.A. Shiddiky.Gold-loaded nanoporous ferric oxide nanocubes for electrocatalytic detection of microRNA at attomolar level.. Biosens Bioelectron. 2018;101:275281. doi:10.1016/j.bios.2017.09.027

Related Elements

Gold

See more Gold products. Gold (atomic symbol: Au, atomic number: 79) is a Block D, Group 11, Period 6 element with an atomic weight of 196.966569. The number of electrons in each of Gold's shells is 2, 8, 18, 32, 18, 1 and its electron configuration is [Xe]4f142 5d10 6s1. Gold Bohr ModelThe gold atom has a radius of 144 pm and a Van der Waals radius of 217 pm. Gold was first discovered by Early Man prior to 6000 B.C. In its elemental form, gold has a metallic yellow appearance. Gold is a soft metal and is usually alloyed to give it more strength.Elemental Gold It is a good conductor of heat and electricity, and is unaffected by air and most reagents. It is one of the least reactive chemical elements. Gold is often found as a free element and with silver as a gold-silver alloy. Less commonly, it is found in minerals as gold compounds, usually with tellurium.

Iron

See more Iron products. Iron (atomic symbol: Fe, atomic number: 26) is a Block D, Group 8, Period 4 element with an atomic weight of 55.845. The number of electrons in each of Iron's shells is 2, 8, 14, 2 and its electron configuration is [Ar] 3d6 4s2. Iron Bohr ModelThe iron atom has a radius of 126 pm and a Van der Waals radius of 194 pm. Iron was discovered by humans before 5000 BC. In its elemental form, iron has a lustrous grayish metallic appearance. Iron is the fourth most common element in the Earth's crust and the most common element by mass forming the earth as a whole. Iron is rarely found as a free element, since it tends to oxidize easily; it is usually found in minerals such as magnetite, hematite, goethite, limonite, or siderite.Elemental Iron Though pure iron is typically soft, the addition of carbon creates the alloy known as steel, which is significantly stronger.

Related Forms & Applications