Relationships between the elastic and fracture properties of boronitrene and molybdenum disulfide and those of graphene.

Title Relationships between the elastic and fracture properties of boronitrene and molybdenum disulfide and those of graphene.
Authors P. Hess
Journal Nanotechnology
DOI 10.1088/1361-6528/aa52e4
Abstract

A consistent set of 2D elastic and fracture properties of hexagonal boron nitride (h-BN) monolayers (boronitrene) and molybdenum disulfide (MoS2) nanosheets is derived. Reported literature values for Young's moduli and fracture strengths, based on experiments and DFT calculations, were used to estimate the line or edge energy with a local 2D bond-breaking model. Consistent information was obtained for intrinsic fracture properties. The basic mechanical properties of boronitrene are roughly 25% lower than the corresponding graphene values. This is consistent with the tensile bond force model, and the lower ionic-covalent bonding energy of sp(2)-hybridized B-N bonds in comparison with sp(2)-hybridized carbon bonds. While the intrinsic stiffness and strength of MoS2 correlate with the strength of its constituent chemical bonds, DFT calculations of the line or edge energy scale with roughly two times the Mo-S bonding energy, whereas the 2D bond-breaking model yields a correlation similar to that found for h-BN. Additional failure properties such as the fracture toughness and strain energy release rate were determined. Together with the intrinsic strengths a Griffith plot of the effective strength of defective h-BN and MoS2 versus the square root of half the defect size of single defects such as (multi)vacancies and micro-cracks exhibits a slope similar to that of the graphene plot.

Citation P. Hess.Relationships between the elastic and fracture properties of boronitrene and molybdenum disulfide and those of graphene.. Nanotechnology. 2017;28(6):064002. doi:10.1088/1361-6528/aa52e4

Related Elements

Molybdenum

See more Molybdenum products. Molybdenum (atomic symbol: Mo, atomic number: 42) is a Block D, Group 6, Period 5 element with an atomic weight of 95.96. Molybdenum Bohr ModelThe number of electrons in each of molybdenum's shells is [2, 8, 18, 13, 1] and its electron configuration is [Kr] 4d5 5s1. The molybdenum atom has a radius of 139 pm and a Van der Waals radius of 209 pm. In its elemental form, molybdenum has a gray metallic appearance. Molybdenum was discovered by Carl Wilhelm in 1778 and first isolated by Peter Jacob Hjelm in 1781. Molybdenum is the 54th most abundant element in the earth's crust. Elemental MolybdenumIt has the third highest melting point of any element, exceeded only by tungsten and tantalum. Molybdenum does not occur naturally as a free metal, it is found in various oxidation states in minerals. The primary commercial source of molybdenum is molybdenite, although it is also recovered as a byproduct of copper and tungsten mining. The origin of the name Molybdenum comes from the Greek word molubdos meaning lead.

Boron

See more Boron products. Boron Bohr ModelBoron (atomic symbol: B, atomic number: 5) is a Block P, Group 13, Period 2 element with an atomic weight of 10.81. The number of electrons in each of boron's shells is 2, 3 and its electron configuration is [He] 2s2 2p1. The boron atom has a radius of 90 pm and a Van der Waals radius of 192 pm. Boron was discovered by Joseph Louis Gay-Lussac and Louis Jacques Thénard in 1808 and was first isolated by Humphry Davy later that year. Boron is classified as a metalloid is not found naturally on earth. Elemental BoronAlong with carbon and nitrogen, boron is one of the few elements in the periodic table known to form stable compounds featuring triple bonds. Boron has an energy band gap of 1.50 to 1.56 eV, which is higher than that of either silicon or germanium. The name Boron originates from a combination of carbon and the Arabic word buraqu meaning borax.

Sulfur

See more Sulfur products. Sulfur (or Sulphur) (atomic symbol: S, atomic number: 16) is a Block P, Group 16, Period 3 element with an atomic radius of 32.066. Sulfur Bohr ModelThe number of electrons in each of Sulfur's shells is 2, 8, 6 and its electron configuration is [Ne] 3s2 3p4. In its elemental form, sulfur has a light yellow appearance. The sulfur atom has a covalent radius of 105 pm and a Van der Waals radius of 180 pm. In nature, sulfur can be found in hot springs, meteorites, volcanoes, and as galena, gypsum, and epsom salts. Sulfur has been known since ancient times but was not accepted as an element until 1777, when Antoine Lavoisier helped to convince the scientific community that it was an element and not a compound.

Carbon

See more Carbon products. Carbon (atomic symbol: C, atomic number: 6) is a Block P, Group 14, Period 2 element. Carbon Bohr ModelThe number of electrons in each of Carbon's shells is 2, 4 and its electron configuration is [He]2s2 2p2. In its elemental form, carbon can take various physical forms (known as allotropes) based on the type of bonds between carbon atoms; the most well known allotropes are diamond, graphite, amorphous carbon, glassy carbon, and nanostructured forms such as carbon nanotubes, fullerenes, and nanofibers . Carbon is at the same time one of the softest (as graphite) and hardest (as diamond) materials found in nature. It is the 15th most abundant element in the Earth's crust, and the fourth most abundant element (by mass) in the universe after hydrogen, helium, and oxygen. Carbon was discovered by the Egyptians and Sumerians circa 3750 BC. It was first recognized as an element by Antoine Lavoisier in 1789.

Related Forms & Applications