Complexes of myo-Inositol-Hexakisphosphate (IP6) with Zinc or Lanthanum for the Decorporation of Radiocesium.

Title Complexes of myo-Inositol-Hexakisphosphate (IP6) with Zinc or Lanthanum for the Decorporation of Radiocesium.
Authors K. Ogawa; M. Aoki; T. Fukuda; S. Kadono; T. Kiwada; A. Odani
Journal Chem Pharm Bull (Tokyo)
DOI 10.1248/cpb.c16-00792
Abstract

Radioactive nuclides leak into the surrounding environment after nuclear power plant disasters, such as the Chernobyl accident and the Fukushima Daiichi Nuclear Power Plant disaster. Cesium-137 ((137)Cs) (t1/2=30.1 year), a water-soluble radionuclide with a long physical half-life, contaminates aquatic ecosystems and food products. In humans, (137)Cs concentrates in muscle tissue and has a long biological half-life, indicating it may be harmful. myo-Inositol-hexakisphosphate (IP6) is a compound found in grain, beans, and oil seeds. IP6 has the ability to form insoluble complexes with metals, including lanthanum (La) and zinc (Zn). We hypothesized that La-IP6 and Zn-IP6 may promote the elimination of (137)Cs from the body through the adsorption of La-IP6 and Zn-IP6 to (137)Cs in the gastrointestinal tract. Therefore, in this study, we evaluated the adsorptive capacity of La-IP6 and Zn-IP6 complexes with (137)Cs in vitro and in vivo. La-IP6 and Zn-IP6 complexes were stable in acidic solution (pH 1.2) at 37°C. In vitro binding assays indicated that La-IP6 and Zn-IP6 complexes adsorbed (137)Cs, with the adsorption capacity of Zn-IP6 to (137)Cs greater than that of La-IP6. To evaluate the usefulness of La-IP6 and Zn-IP6 in vivo, La-IP6 or Zn-IP6 was administrated to mice after intravenous injection of (137)Cs. However, the biodistribution of (137)Cs in the La-IP6 treated group and the Zn-IP6 treated group was nearly identical to the non-treated control group, indicating that La-IP6 and Zn-IP6 were not effective at promoting the elimination of (137)Cs in vivo.

Citation K. Ogawa; M. Aoki; T. Fukuda; S. Kadono; T. Kiwada; A. Odani.Complexes of myo-Inositol-Hexakisphosphate (IP6) with Zinc or Lanthanum for the Decorporation of Radiocesium.. Chem Pharm Bull. 2017;65(3):261267. doi:10.1248/cpb.c16-00792

Related Elements

Cesium

See more Cesium products. Cesium (or Caesium) (atomic symbol: Ce, atomic number: 55) is a Block S, Group 1, Period 6 element with an atomic weight of 132.9054519. The number of electrons in each of Cesium's shells is 2, 8, 18, 18, 8, 1 and its electron configuration is [Xe]6s1. Cesium Bohr ModelThe cesium atom has a radius of 265 pm and a Van der Waals radius of 343 pm. Cesium is a member of the alkali group of metals. It is one of three metals that occur as a liquid at room temperature, the others being mercury and gallium. Elemental CesiumCesium's main commercial source is pollucite ore; however, it is also found in beryl, avogadrite, pezzottaite, and londonite. Cesium was discovered by Robert Bunsen and Gustav Kirchhoff in 1860 and first isolated by Carl Setterberg in 1882. In its elemental form, cesium has a silvery gold appearance. The word Cesium originates from the Latin word "caesius," meaning "sky blue," which refers to the vibrant blue lines in its spectrum.

Lanthanum

See more Lanthanum products. Lanthanum (atomic symbol: La, atomic number: 57) is a Block F, Group 3, Period 6 element with an atomic weight of 138.90547. Lanthanum Bohr ModelThe number of electrons in each of lanthanum's shells is [2, 8, 18, 18, 9, 2] and its electron configuration is [Xe] 5d1 6s2. The lanthanum atom has a radius of 187 pm and a Van der Waals radius of 240 pm. Lanthanum was first discovered by Carl Mosander in 1838. In its elemental form, lanthanum has a silvery white appearance.Elemental Lanthanum It is a soft, malleable, and ductile metal that oxidizes easily in air. Lanthanum is the first element in the rare earth or lanthanide series. It is the model for all the other trivalent rare earths and it is the second most abundant of the rare earths after cerium. Lanthanum is found in minerals such as monazite and bastnasite. The name lanthanum originates from the Greek word Lanthaneia, which means 'to lie hidden'.

Zinc

See more Zinc products. Zinc (atomic symbol: Zn, atomic number: 30) is a Block D, Group 12, Period 4 element with an atomic weight of 65.38. The number of electrons in each of zinc's shells is 2, 8, 18, 2, and its electron configuration is [Ar] 3d10 4s2. Zinc Bohr ModelThe zinc atom has a radius of 134 pm and a Van der Waals radius of 210 pm. Zinc was discovered by Indian metallurgists prior to 1000 BC and first recognized as a unique element by Rasaratna Samuccaya in 800. Zinc was first isolated by Andreas Marggraf in 1746. In its elemental form, zinc has a silver-gray appearance. It is brittle at ordinary temperatures but malleable at 100 °C to 150 °C.Elemental Zinc It is a fair conductor of electricity, and burns in air at high red producing white clouds of the oxide. Zinc is mined from sulfidic ore deposits. It is the 24th most abundant element in the earth's crust and the fourth most common metal in use (after iron, aluminum, and copper). The name zinc originates from the German word "zin," meaning tin.

Phosphorus

Phosphorus Bohr ModelSee more Phosphorus products. Phosphorus (atomic symbol: P, atomic number: 15) is a Block P, Group 15, Period 3 element. The number of electrons in each of Phosphorus's shells is 2, 8, 5 and its electronic configuration is [Ne] 3s2 3p3. The phosphorus atom has a radius of 110.5.pm and its Van der Waals radius is 180.pm. Phosphorus is a highly-reactive non-metallic element (sometimes considered a metalloid) with two primary allotropes, white phosphorus and red phosphorus its black flaky appearance is similar to graphitic carbon. Compound forms of phosphorus include phosphates and phosphides. Phosphorous was first recognized as an element by Hennig Brand in 1669 its name (phosphorus mirabilis, or "bearer of light") was inspired from the brilliant glow emitted by its distillation.

Related Forms & Applications