Molybdenum Boride Mo2B

CAS #:

Linear Formula:

Mo2B

MDL Number:

MFCD01310400

EC No.:

234-502-8

ORDER

PRODUCT Product Code ORDER SAFETY DATA TECHNICAL DATA
(2N) 99% Molybdenum Boride
MO2-B-02
Pricing > SDS > Data Sheet >
(3N) 99.9% Molybdenum Boride
MO2-B-03
Pricing > SDS > Data Sheet >
(4N) 99.99% Molybdenum Boride
MO2-B-04
Pricing > SDS > Data Sheet >
(5N) 99.999% Molybdenum Boride
MO2-B-05
Pricing > SDS > Data Sheet >

Molybdenum Boride Mo2B Properties (Theoretical)

Compound Formula BMo2
Molecular Weight 202.69
Appearance Refractive tetragonal crystals
Melting Point N/A
Boiling Point N/A
Density 9.20 g/cm3
Solubility in H2O N/A
Exact Mass 108.914714
Monoisotopic Mass 108.914711 Da

Molybdenum Boride Mo2B Health & Safety Information

Signal Word Warning
Hazard Statements N/A
Hazard Codes N/A
Risk Codes N/A
Safety Statements N/A
RTECS Number N/A
Transport Information N/A
WGK Germany 3
MSDS / SDS

About Molybdenum Boride Mo2B

Boride IonMolybdenum Boride (Mo2B) is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Molybdenum Boride Mo2B Synonyms

Dimolybdenum monoboride, dimolybdenum boride

Chemical Identifiers

Linear Formula Mo2B
MDL Number MFCD01310400
EC No. 234-502-8
Beilstein/Reaxys No. N/A
Pubchem CID N/A
IUPAC Name N/A
SMILES N/A
InchI Identifier N/A
InchI Key N/A

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Related Elements

Molybdenum

See more Molybdenum products. Molybdenum (atomic symbol: Mo, atomic number: 42) is a Block D, Group 6, Period 5 element with an atomic weight of 95.96. Molybdenum Bohr ModelThe number of electrons in each of molybdenum's shells is [2, 8, 18, 13, 1] and its electron configuration is [Kr] 4d5 5s1. The molybdenum atom has a radius of 139 pm and a Van der Waals radius of 209 pm. In its elemental form, molybdenum has a gray metallic appearance. Molybdenum was discovered by Carl Wilhelm in 1778 and first isolated by Peter Jacob Hjelm in 1781. Molybdenum is the 54th most abundant element in the earth's crust. Elemental MolybdenumIt has the third highest melting point of any element, exceeded only by tungsten and tantalum. Molybdenum does not occur naturally as a free metal, it is found in various oxidation states in minerals. The primary commercial source of molybdenum is molybdenite, although it is also recovered as a byproduct of copper and tungsten mining. The origin of the name Molybdenum comes from the Greek word molubdos meaning lead.

Boron

See more Boron products. Boron Bohr ModelBoron (atomic symbol: B, atomic number: 5) is a Block P, Group 13, Period 2 element with an atomic weight of 10.81. The number of electrons in each of boron's shells is 2, 3 and its electron configuration is [He] 2s2 2p1. The boron atom has a radius of 90 pm and a Van der Waals radius of 192 pm. Boron was discovered by Joseph Louis Gay-Lussac and Louis Jacques Thénard in 1808 and was first isolated by Humphry Davy later that year. Boron is classified as a metalloid is not found naturally on earth. Elemental BoronAlong with carbon and nitrogen, boron is one of the few elements in the periodic table known to form stable compounds featuring triple bonds. Boron has an energy band gap of 1.50 to 1.56 eV, which is higher than that of either silicon or germanium. The name Boron originates from a combination of carbon and the Arabic word buraqu meaning borax.

TODAY'S TOP DISCOVERY!

March 28, 2024
Los Angeles, CA
Each business day American Elements' scientists & engineers post their choice for the most exciting materials science news of the day
U.S. DOE scientists convert carbon monoxide into methanol using cascade reaction strategy

U.S. DOE scientists convert carbon monoxide into methanol using cascade reaction strategy