Neodymium doped Potassium-Gadolinium Tungstate

Nd:KGW

Linear Formula:

Nd:KGd(WO4)2

ORDER

PRODUCT Product Code ORDER SAFETY DATA TECHNICAL DATA
(5N) 99.999% Nd:KGW Crystals (3% Nd)
KGW-ND03-05-C
Pricing > SDS > Data Sheet >
(5N) 99.999% Nd:KGW Crystals (5% Nd)
KGW-ND05-05-C
Pricing > SDS > Data Sheet >
(5N) 99.999% Nd:KGW Crystals (8% Nd)
KGW-ND08-05-C
Pricing > SDS > Data Sheet >
CUSTOMER ADVISORY: American Elements does not supply gadolinium for use in ANY form of GBCA (“Gadolinium-Based Contrast Agents”) or for ANY medical, pharmaceutical or nutritional use whatsoever or for the manufacture, testing, or development of ANY such products.

Neodymium doped Potassium-Gadolinium Tungstate Properties (Theoretical)

Appearance Solid
Melting Point N/A
Boiling Point N/A
Density N/A
Solubility in H2O N/A

Neodymium doped Potassium-Gadolinium Tungstate Health & Safety Information

Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
RTECS Number N/A
Transport Information N/A
MSDS / SDS

About Neodymium doped Potassium-Gadolinium Tungstate

Tungstate IonNeodymium doped Potassium Gadolinium Tungstate (Nd:KGW) crystals are an excellent laser gain material that is 3-5 times more efficient than Nd:YAG. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Neodymium doped Potassium-Gadolinium Tungstate Synonyms

Nd:KGW, Nd doped Potassium Gadolinium Tungstate, Nd:KGd(WO4)2

Chemical Identifiers

Linear Formula Nd:KGd(WO4)2
MDL Number N/A
EC No. N/A

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Related Elements

Gadolinium

See more Gadolinium products. Gadolinium (atomic symbol: Gd, atomic number: 64) is a Block F, Group 3, Period 6 element with an atomic radius of 157.25. Gadolinium Bohr ModelThe number of electrons in each of Gadolinium's shells is [2, 8, 18, 25, 9, 2] and its electron configuration is [Xe] 4f7 5d1 6s2. The gadolinium atom has a radius of 180 pm and a Van der Waals radius of 237 pm. Gadolinium was discovered by Jean Charles Galissard de Marignac in 1880 and first isolated by Lecoq de Boisbaudran in 1886. In its elemental form, gadolinium has a silvery-white appearance. Gadolinium is a rare earth or lanthanide element that possesses unique properties advantageous to specialized applications such as semiconductor fabrication and nuclear reactor shielding. Elemental Gadolinium PictureIt is utilized for both its high magnetic moment (7.94μ B) and in phosphors and scintillator crystals. When complexed with EDTA ligands, it is used as an injectable contrast agent for MRIs. The element is named after the Finnish chemist and geologist Johan Gadolin.

Neodymium

See more Neodymium products. Neodymium (atomic symbol: Nd, atomic number: 60)is a Block F, Group 3, Period 6 element with an atomic weight of 144.242. Neodymium Bohr ModelThe number of electrons in each of Neodymium's shells is 2, 8, 18, 22, 8, 2 and its electron configuration is [Xe] 4f4 6s2. The neodymium atom has a radius of 181 pm and a Van der Waals radius of 229 pm. Neodymium was first discovered by Carl Aer von Welsbach in 1885. In its elemental form, neodymium has a silvery-white appearance. Neodymium is the most abundant of the rare earths after cerium and lanthanum. Neodymium is found in monazite and bastnäsite ores. It is used to make high-strength neodymium magnets and laser crystal substances like neodymium-doped yttrium aluminum garnet (also known as Nd:YAG). The name originates from the Greek words neos didymos, meaning new twin.

Potassium

Elemental PotassiumSee more Potassium products. Potassium (atomic symbol: K, atomic number: 19) is a Block S, Group 1, Period 4 element with an atomic weight of 39.0983. The number of electrons in each of Potassium's shells is [2, 8, 8, 1] and its electron configuration is [Ar] 4s1. The potassium atom has a radius of 227.2 pm and a Van der Waals radius of 275 pm. Potassium was discovered and first isolated by Sir Humphrey Davy in 1807. Potassium is the seventh most abundant element on earth. It is one of the most reactive and electropositive of all metals and rapidly oxidizes. As with other alkali metals, potassium decomposes in water with the evolution of hydrogen because of its reacts violently with water, it only occurs in nature in ionic salts.Potassium Bohr Model In its elemental form, potassium has a silvery gray metallic appearance, but its compounds (such as potassium hydroxide) are more frequently used in industrial and chemical applications. The origin of the element's name comes from the English word 'potash,' meaning pot ashes, and the Arabic word qali, which means alkali. The symbol K originates from the Latin word kalium.

Tungsten

See more Tungsten products. Tungsten (atomic symbol: W, atomic number: 74) is a Block D, Group 6, Period 6 element with an atomic weight of 183.84. The number of electrons in each of tungsten's shells is [2, 8, 18, 32, 12, 2] and its electron configuration is [Xe] 4f14 5d4 6s2. Tungsten Bohr ModelThe tungsten atom has a radius of 139 pm and a Van der Waals radius of 210 pm. Tungsten was discovered by Torbern Bergman in 1781 and first isolated by Juan José Elhuyar and Fausto Elhuyar in 1783. In its elemental form, tungsten has a grayish white, lustrous appearance. Elemental TungstenTungsten has the highest melting point of all the metallic elements and a density comparable to that or uranium or gold and about 1.7 times that of lead. Tungsten alloys are often used to make filaments and targets of x-ray tubes. It is found in the minerals scheelite (CaWO4) and wolframite [(Fe,Mn)WO4]. In reference to its density, Tungsten gets its name from the Swedish words tung and sten, meaning heavy stone.

TODAY'S TOP DISCOVERY!

December 10, 2024
Los Angeles, CA
Each business day American Elements' scientists & engineers post their choice for the most exciting materials science news of the day
Physics student builds improvised polarimeter using simple circuitry, polarizing film, and LEGO toy bricks

Physics student builds improvised polarimeter using simple circuitry, polarizing film, and LEGO toy bricks