Skip to main content

Zinc Tin Antimonide

Linear Formula:
ZnSnSb2
MDL Number
N/A
EC No.:
N/A

ORDER

Product Product Code ORDER SAFETY DATA Technical data
(2N) 99% Zinc Tin Antimonide ZN-SBSN-02 SDS > Data Sheet >
(3N) 99.9% Zinc Tin Antimonide ZN-SBSN-03 SDS > Data Sheet >
(4N) 99.99% Zinc Tin Antimonide ZN-SBSN-04 SDS > Data Sheet >
(5N) 99.999% Zinc Tin Antimonide ZN-SBSN-05 SDS > Data Sheet >
WHOLESALE/SKU 0000-742-{{nid}}

Zinc Tin Antimonide Properties (Theoretical)

Compound Formula ZnSnSb2
Appearance Solid
Melting Point 597 °C
Boiling Point N/A
Density 5.67 g/cm3
Solubility in H2O N/A
Exact Mass 427.639 g/mol
Monoisotopic Mass 425.639 g/mol
Thermal Conductivity 7.60 W/m-K

Zinc Tin Antimonide Health & Safety Information

Signal Word Warning
Hazard Statements H302-H332-H411
Hazard Codes Xn, N
Precautionary Statements P261-P264-P270-P271-P273-P301+P312-P304+P340-P312-P330-P391-P501
Risk Codes R20/22 R51/53 RX
Safety Statements N/A
Transport Information N/A
GHS Pictogram
Image
Exclamation Point - GHS07
,
Image
Hazardous to the Aquatic Environment - GHS09

About Zinc Tin Antimonide

Zinc Tin Antimonide is one of numerous high purity compound semiconductors manufactured by American Elements for advanced electronics and technology applications. Custom compositions of Zn:Sn:Sb are available. We also produce tin antimonide, zinc antimonide, and zinc tin alloy. Please request a quote above to receive pricing information based on your specifications.

Synonyms

Zinc tin antimony alloy, ZnSnSb, antimony-doped zinc tin, stannic zinc antimony

Chemical Identifiers

Linear Formula ZnSnSb2
Pubchem CID 10094066
MDL Number N/A
EC No. N/A
IUPAC Name zinc; antimony; tin(4+)
Beilstein/Reaxys No.
SMILES [Zn+2].[Sn+4].[Sb].[Sb]
InchI Identifier InChI=1S/2Sb.Sn.Zn/q;;+4;+2
InchI Key OPFYHAZQIMIOTF-UHFFFAOYSA-N
Chemical Formula
Molecular Weight
Standard InchI
Appearance
Melting Point
Boiling Point
Density

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Related Elements

See more Antimony products. Antimony (atomic symbol: Sb, atomic number: 51) is a Block P, Group 15, Period 5 element with an atomic radius of 121.760. Antimony Bohr Model The number of electrons in each of antimony's shells is 2, 8, 18, 18, 5 and its electron configuration is [Kr] 4d10 5s2 5p3. The antimony atom has a radius of 140 pm and a Van der Waals radius of 206 pm. Antimony was discovered around 3000 BC and first isolated by Vannoccio Biringuccio in 1540 AD. In its elemental form, antimony has a silvery lustrous gray appearance. Elemental Antimony The most common source of antimony is the sulfide mineral known as stibnite (Sb2S3), although it sometimes occurs natively as well. Antimony has numerous applications, most commonly in flame-retardant materials. It also increases the hardness and strength of lead when combined in an alloy and is frequently employed as a dopant in semiconductor materials. Its name is derived from the Greek words anti and monos, meaning a metal not found by itself.

Tin Bohr ModelSee more Tin products. Tin (atomic symbol: Sn, atomic number: 50) is a Block P, Group 14, Period 5 element with an atomic weight of 118.710. The number of electrons in each of tin's shells is 2, 8, 18, 18, 4 and its electron configuration is [Kr] 4d10 5s2 5p2. The tin atom has a radius of 140.5 pm and a Van der Waals radius of 217 pm.In its elemental form, tin has a silvery-gray metallic appearance. It is malleable, ductile and highly crystalline. High Purity (99.9999%) Tin (Sn) MetalTin has nine stable isotopes and 18 unstable isotopes. Under 3.72 degrees Kelvin, Tin becomes a superconductor. Applications for tin include soldering, plating, and such alloys as pewter. The first uses of tin can be dated to the Bronze Age around 3000 BC in which tin and copper were combined to make the alloy bronze. The origin of the word tin comes from the Latin word Stannum which translates to the Anglo-Saxon word tin. For more information on tin, including properties, safety data, research, and American Elements' catalog of tin products, visit the Tin element page.

See more Zinc products. Zinc (atomic symbol: Zn, atomic number: 30) is a Block D, Group 12, Period 4 element with an atomic weight of 65.38. The number of electrons in each of zinc's shells is 2, 8, 18, 2, and its electron configuration is [Ar] 3d10 4s2. Zinc Bohr ModelThe zinc atom has a radius of 134 pm and a Van der Waals radius of 210 pm. Zinc was discovered by Indian metallurgists prior to 1000 BC and first recognized as a unique element by Rasaratna Samuccaya in 800. Zinc was first isolated by Andreas Marggraf in 1746. In its elemental form, zinc has a silver-gray appearance. It is brittle at ordinary temperatures but malleable at 100 °C to 150 °C.Elemental Zinc It is a fair conductor of electricity, and burns in air at high red producing white clouds of the oxide. Zinc is mined from sulfidic ore deposits. It is the 24th most abundant element in the earth's crust and the fourth most common metal in use (after iron, aluminum, and copper). The name zinc originates from the German word "zin," meaning tin.