Skip to Page Content

Gallium(III) Telluride Sputtering Target

Ga2Te3
CAS 12024-27-0


Product Product Code Request Quote
(2N) 99% Gallium(III) Telluride Sputtering Target GA3-TE-02-ST Request Quote
(3N) 99.9% Gallium(III) Telluride Sputtering Target GA3-TE-03-ST Request Quote
(4N) 99.99% Gallium(III) Telluride Sputtering Target GA3-TE-04-ST Request Quote
(5N) 99.999% Gallium(III) Telluride Sputtering Target GA3-TE-05-ST Request Quote
(6N) 99.9999% Gallium(III) Telluride Sputtering Target GA3-TE-06-ST Request Quote
(7N) 99.99999% Gallium(III) Telluride Sputtering Target GA3-TE-07-ST Request Quote

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
Ga2Te3 12024-27-0 N/A N/A 234-690-1 N/A N/A [Ga+2].[TeH2-2] InChI=1S/Ga.Te.H/q+2;-2; GSXIPKZTZZWWRS-UHFFFAOYSA-N

PROPERTIES Compound Formula Mol. Wt. Appearance Melting Point Boiling Point Density Exact Mass Monoisotopic Mass Charge MSDS
Ga2Te3 522.3 cubic crystals 790° C (1,454° F) N/A 5.57 g/cm3 N/A N/A N/A Safety Data Sheet

Telluride IonAmerican Elements specializes in producing high purity Gallium(III) Telluride Sputtering Targets with the highest possible density High Purity (99.99%) Gallium(III) Telluride Sputtering Targetand smallest possible average grain sizes for use in semiconductor, chemical vapor deposition (CVD) and physical vapor deposition (PVD) display and optical applications. Our standard Sputtering Targets for thin film are available monoblock or bonded with dimensions and configurations up to 820 mm with hole drill locations and threading, beveling, grooves and backing designed to work with both older sputtering devices as well as the latest process equipment, such as large area coating for solar energy or fuel cells and flip-chip applications. Research sized targets are also produced as well as custom sizes and alloys. All targets are analyzed using best demonstrated techniques including X-Ray Fluorescence (XRF), Glow Discharge Mass Spectrometry (GDMS), and Inductively Coupled Plasma (ICP). "Sputtering" allows for thin film deposition of an ultra high purity sputtering metallic or oxide material onto another solid substrate by the controlled removal and conversion of the target material into a directed gaseous/plasma phase through ionic bombardment. We can also provide targets outside this range in addition to just about any size rectangular, annular, or oval target. Materials are produced using crystallization, solid state and other ultra high purification processes such as sublimation. American Elements specializes in producing custom compositions for commercial and research applications and for new proprietary technologies. American Elements also casts any of the rare earth metals and most other advanced materials into rod, bar, or plate form, as well as other machined shapes and through other processes nanoparticles.Other shapes are available by request.

Gallium (Ga) atomic and molecular weight, atomic number and elemental symbolGallium (atomic symbol: Ga, atomic number: 31) is a Block P, Group 13, Period 4 element with an atomic weight of 69.723.The number of electrons in each of Gallium's shells is 2, 8, 18, 3 and its electron configuration is [Ar] 3d10 4s2 4p1. The gallium atom has a radius of 122.1 pm and a Van der Waals radius of 187 pm. Gallium Bohr ModelGallium was predicted by Dmitri Mendeleev in 1871. It was first discovered and isolated by Lecoq de Boisbaudran in 1875. In its elemental form, gallium has a silvery appearance. Elemental GalliumGallium is one of three elements that occur naturally as a liquid at room temperature, the other two being mercury and cesium. Gallium does not exist as a free element in nature and is sourced commercially from bauxite and sphalerite. Currently, gallium is used in semiconductor devices for microelectronics and optics. The element name originates from the Latin word 'Gallia', the old name of France, and the word 'Gallus,' meaning rooster. For more information on gallium, including properties, safety data, research, and American Elements' catalog of gallium products, visit our Gallium element page.

Tellurium Bohr ModelTellurium (Te) atomic and molecular weight, atomic number and elemental symbolTellurium (atomic symbol: Te, atomic number: 52) is a Block P, Group 16, Period 5 element with an atomic radius of 127.60. The number of electrons in each of tellurium's shells is 2, 8, 18, 18, 6 and its electron configuration is [Kr] 4d10 5s2 5p4. Tellurium was discovered by Franz Muller von Reichenstein in 1782 and first isolated by Martin Heinrich Klaproth in 1798. In its elemental form, tellurium has a silvery lustrous gray appearance.Elemental Tellurium The tellurium atom has a radius of 140 pm and a Van der Waals radius of 206 pm. Tellurium is most commonly sourced from the anode sludges produced as a byproduct of copper refining. The name Tellurium originates from the Greek word Tellus, meaning Earth. For more information on tellurium, including properties, safety data, research, and American Elements' catalog of tellurium products, visit the Tellurium element page.

HEALTH, SAFETY & TRANSPORTATION INFORMATION
Material Safety Data Sheet MSDS
Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
Risk Codes N/A
Safety Precautions N/A
RTECS Number N/A
Transport Information N/A
WGK Germany N/A
Globally Harmonized System of
Classification and Labelling (GHS)
N/A        

CUSTOMERS FOR GALLIUM (III) TELLURIDE SPUTTERING TARGET HAVE ALSO LOOKED AT
Gallium Acetylacetonate Gallium Acetate Gallium Fluoride Gallium Antimonide Triethylgallium
Copper Indium Gallium Selenide - CIGS Gallium Arsenide Gallium Oxide Nanopowder Gallium Oxide Powder Gallium Nitride Wafer
Gadolinium Gallium Garnet - GGG Copper Gallium Sputtering Target Trimethylgallium Gallium doped Zinc Oxide - GZO Gallium Oxide
Show Me MORE Forms of Gallium

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Gallium

  • Native gallium adatoms discovered on atomically-smooth gallium nitride surfaces at low temperature. Alam K, Foley A, Smith AR. Nano Lett. 2015 Mar 11
  • Potential use of gallium-doped phosphate-based glass material for periodontitis treatment. Sahdev R, Ansari TI, Higham SM, Valappil SP. J Biomater Appl. 2015 Feb 12.
  • Effects of erbium-and chromium-doped yttrium scandium gallium garnet and diode lasers on the surfaces of restorative dental materials: A scanning electron microscope study. Hatipoglu M, Barutcigil C. Niger J Clin Pract. 2015 Mar-Apr
  • Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles. Knight MW, Coenen T, Yang Y, Brenny BJ, Losurdo M, Brown AS, Everitt HO, Polman A. ACS Nano. 2015 Feb 24
  • Giant topological nontrivial band gaps in chloridized gallium bismuthide. Li L, Zhang X, Chen X, Zhao M. Nano Lett. 2015 Feb 11
  • Synthesis of Air- and Moisture-Stable Dibenzogallepins: Control of Planarity of Seven-Membered Rings in Solid States by Coordination to Gallium Atoms. Matsumoto T, Takamine H, Tanaka K, Chujo Y. Org Lett. 2015 Mar 4.
  • Structural, elastic and vibrational properties of nanocrystalline lutetium gallium garnet under high pressure. Monteseguro V, Rodríguez-Hernández P, Ortiz HM, Venkatramu V, Manjón FJ, Jayasankar CK, Lavín V, Muñoz A. Phys Chem Chem Phys. 2015 Mar 13.
  • Gallium-68 dotatate PET/CT is superior to other imaging modalities in the detection of medullary carcinoma of the thyroid in the presence of high serum calcitonin. Tran K, Khan S, Taghizadehasl M, Palazzo F, Frilling A, Todd JF, Al-Nahhas A. Hell J Nucl Med. 2015 Feb 13.
  • Nanoscale Optical Properties of Indium Gallium Nitride/Gallium Nitride Nanodisk-in-Rod Heterostructures. Zhou X, Lu MY, Lu YJ, Jones EJ, Gwo S, Grade?ak S. ACS Nano. 2015 Feb 12.
  • Fabrication and characterization of cerium-doped terbium gallium garnet with high magneto-optical properties. Chen Z, Hang Y, Yang L, Wang J, Wang X, Hong J, Zhang P, Shi C, Wang Y. Opt Lett. 2015 Mar 1
  • Synthesis and characterization of cerium- and gallium-containing borate bioactive glass scaffolds for bone tissue engineering. Deliormanl? AM. J Mater Sci Mater Med. 2015 Feb
  • Mechanically Sintered Gallium-Indium Nanoparticles. Boley JW, White EL, Kramer RK. Adv Mater. 2015 Feb 27.
  • Prolonged-acting, Multi-targeting Gallium Nanoparticles Potently Inhibit Growth of Both HIV and Mycobacteria in Co-Infected Human Macrophages. Narayanasamy P, Switzer BL, Britigan BE. Sci Rep. 2015 Mar 6
  • The E1-E2 center in gallium arsenide is the divacancy. Schultz PA. J Phys Condens Matter. 2015 Feb 25
  • Radiofluorination of a Pre-formed Gallium(III) Aza-macrocyclic Complex: Towards Next-Generation Positron Emission Tomography (PET) Imaging Agents. Bhalla R, Levason W, Luthra SK, McRobbie G, Sanderson G, Reid G. Chemistry. 2015 Mar 16
  • Comparative Studies of Three Gallium-68-labeled [des-Arg10]Kallidin Derivatives for Imaging Bradykinin B1 Receptor Expression with Positron Emission Tomography. Lin KS, Amouroux G, Pan J, Zhang Z, Jenni S, Lau J, Liu Z, Hundal-Jabal N, Colpo N, Bénard F. J Nucl Med. 2015 Mar 5.
  • High Final Energy of Low - Level Gallium Arsenide Laser Therapy Enhances Skeletal Muscle Recovery without a Positive Effect on Collagen Remodeling. de Freitas CE, Bertaglia RS, Vechetti Júnior IJ, Mareco EA, Salomão RA, de Paula TG, Nai GA, Carvalho RF, Pacagnelli FL, Dal-Pai-Silva M. Photochem Photobiol. 2015 Mar 7.
  • Insertion of benzonitrile into Al-N and ga-N bonds: formation of fused carbatriaza-gallanes/alanes and their subsequent synthesis from amidines and trimethyl-gallium/aluminum. Maheswari K, Rao AR, Reddy ND. Inorg Chem. 2015 Feb 16
  • Phytotoxicity and Transport of Gallium (Ga) in Rice Seedlings for 2-Day of Exposure. Yu XZ, Feng XH, Feng YX. Bull Environ Contam Toxicol. 2015 Jan 30.
  • Recycling process for recovery of gallium from GaN an e-waste of LED industry through ball milling, annealing and leaching. Swain B, Mishra C, Kang L, Park KS, Lee CG, Hong HS. Environ Res. 2015 Mar 10
>

Recent Research & Development for Tellurides

  • A turn-on fluorescent probe for hypochlorous acid based on the oxidation of diphenyl telluride. Venkatesan P, Wu SP. Analyst. 2015 Feb 21
  • Novel magnetic nickel telluride nanowires decorated with thorns: synthesis and their intrinsic peroxidase-like activity for detection of glucose. Wan L, Liu J, Huang XJ. Chem Commun (Camb). 2014 Nov 14
  • A performance comparison of novel cadmium-zinc-telluride camera and conventional SPECT/CT using anthropomorphic torso phantom and water bags to simulate soft tissue and breast attenuation. Liu CJ, Cheng JS, Chen YC, Huang YH, Yen RF. Ann Nucl Med. 2015 Jan 28.
  • Terahertz-field-induced second harmonic generation through Pockels effect in zinc telluride crystal. Cornet M, Degert J, Abraham E, Freysz E. Opt Lett. 2014 Oct 15
  • Quantitative high-efficiency cadmium-zinc-telluride SPECT with dedicated parallel-hole collimation system in obese patients: Results of a multi-center study. Nakazato R, Slomka PJ, Fish M, Schwartz RG, Hayes SW, Thomson LE, Friedman JD, Lemley M Jr, Mackin ML, Peterson B, Schwartz AM, Doran JA, Germano G, Berman DS. J Nucl Cardiol. 2015 Apr
  • Simulation study comparing high-purity germanium and cadmium zinc telluride detectors for breast imaging. Campbell DL, Peterson TE. Phys Med Biol. 2014 Nov 21
  • Novel structural phases and superconductivity of iridium telluride under high pressures. Li B, Huang G, Sun J, Xing Z. Sci Rep. 2014 Sep 22
  • Efficient and ultrafast formation of long-lived charge-transfer exciton state in atomically thin cadmium selenide/cadmium telluride type-II heteronanosheets. Wu K, Li Q, Jia Y, McBride JR, Xie ZX, Lian T. ACS Nano. 2015 Jan 27
  • A density-functional study on the electronic and vibrational properties of layered antimony telluride. P Stoffel R, L Deringer V, E Simon R, P Hermann R, Dronskowski R. J Phys Condens Matter. 2015 Mar 4
  • Highly sensitive fluorescence biosensors for sparfloxacin detection at nanogram level based on electron transfer mechanism of cadmium telluride quantum dots. Liang W, Liu S, Song J, Hao C, Wang L, Li D, He Y. Biotechnol Lett. 2015 Jan 22.
  • Cardiac single-photon emission computed tomography using ultrafast cadmium zinc telluride gamma camera with thallium-201 yields high-diagnostic performance despite lower radiation dose and shorter acquisition time. Kasai T. Circ J. 2014
  • Antibacterial potential of rutin conjugated with thioglycolic acid capped cadmium telluride quantum dots (TGA-CdTe QDs). Ananth DA, Rameshkumar A, Jeyadevi R, Jagadeeswari S, Nagarajan N, Renganathan R, Sivasudha T. Spectrochim Acta A Mol Biomol Spectrosc. 2015 Mar 5
  • Cadmium telluride quantum dots (CdTe-QDs) and enhanced ultraviolet-B (UV-B) radiation trigger antioxidant enzyme metabolism and programmed cell death in wheat seedlings. Chen H, Gong Y, Han R. PLoS One. 2014 Oct 20
  • Fluorescent cadmium telluride quantum dots embedded chitosan nanoparticles: a stable, biocompatible preparation for bio-imaging. Ghormade V, Gholap H, Kale S, Kulkarni V, Bhat S, Paknikar K. J Biomater Sci Polym Ed. 2015 Jan
  • Cadmium telluride (CdTe) and cadmium selenide (CdSe) leaching behavior and surface chemistry in response to pH and O2. Zeng C, Ramos-Ruiz A, Field JA, Sierra-Alvarez R. J Environ Manage. 2015 Feb 21
  • Relationships between myocardial perfusion abnormalities and poststress left ventricular functional impairment on cadmium-zinc-telluride imaging. Gimelli A, Liga R, Giorgetti A, Kusch A, Pasanisi EM, Marzullo P. Eur J Nucl Med Mol Imaging. 2015 Feb 12.
  • A fumonisins immunosensor based on polyanilino-carbon nanotubes doped with palladium telluride quantum dots. Masikini M, Mailu SN, Tsegaye A, Njomo N, Molapo KM, Ikpo CO, Sunday CE, Rassie C, Wilson L, Baker PG, Iwuoha EI. Sensors (Basel). 2014 Dec 30
  • Mechanism of Bismuth Telluride Exfoliation in an Ionic Liquid Solvent. Ludwig T, Guo L, McCrary PD, Zhang Z, Gordon H, Quan H, Stanton M, Frazier R, Rogers RD, Wang HT, Turner CH. Langmuir. 2015 Mar 11.
  • Influence of proton-pump inhibitors on stomach wall uptake of 99mTc-tetrofosmin in cadmium-zinc-telluride SPECT myocardial perfusion imaging. Mouden M, Rijkee KS, Schreuder N, Timmer JR, Jager PL. Nucl Med Commun. 2015 Feb
  • Nature of AX Centers in Antimony-Doped Cadmium Telluride Nanobelts. Huang L, Lin CC, Riediger M, Röder R, Tse PL, Ronning C, Lu JG. Nano Lett. 2015 Feb 11