Spectral-structural characteristics of the extremely scarce silver arsenic sulfosalts, proustite, smithite, trechmannite and xanthoconite: ?-Raman spectroscopy evidence.

Title Spectral-structural characteristics of the extremely scarce silver arsenic sulfosalts, proustite, smithite, trechmannite and xanthoconite: ?-Raman spectroscopy evidence.
Authors S. Kharbish
Journal Spectrochim Acta A Mol Biomol Spectrosc
DOI 10.1016/j.saa.2017.01.038
Abstract

The spectral - structural features of the rare silver arsenic (Ag-As) sulfosalts, proustite, Ag3AsS3, and the extremely scarce smithite, AgAsS2, trechmannite, AgAsS2 and xanthoconite, Ag3AsS3, were studied by the ?-Raman technique. Stretching - bending vibrations of the pyramidal isolated and interconnected AsS3 groups were responsible for the Raman spectra of the studied sulfosalts. The symmetric and asymmetric stretching modes appear between 380 and 350cm(-1), whereas those of bending (SAsS) vibrations between 335 and 280cm(-1). The AsS longer bond lengths absolutely demonstrate the red shift (i.e. decrease in energy) from xanthoconite to trechmannite, smithite and proustite and the lowering in FWHM in comparable vibrational modes.

Citation S. Kharbish.Spectral-structural characteristics of the extremely scarce silver arsenic sulfosalts, proustite, smithite, trechmannite and xanthoconite: ?-Raman spectroscopy evidence.. Spectrochim Acta A Mol Biomol Spectrosc. 2017;177:104110. doi:10.1016/j.saa.2017.01.038

Related Elements

Silver

See more Silver products. Silver (atomic symbol: Ag, atomic number: 47) is a Block D, Group 11, Period 5 element with an atomic weight of 107.8682. Silver Bohr ModelThe number of electrons in each of Silver's shells is 2, 8, 18, 18, 1 and its electron configuration is [Kr]4d10 5s1. The silver atom has a radius of 144 pm and a Van der Waals radius of 203 pm. Silver was first discovered by Early Man prior to 5000 BC. In its elemental form, silver has a brilliant white metallic luster. Elemental SilverIt is a little harder than gold and is very ductile and malleable, being exceeded only by gold and perhaps palladium. Pure silver has the highest electrical and thermal conductivity of all metals and possesses the lowest contact resistance. It is stable in pure air and water, but tarnishes when exposed to ozone, hydrogen sulfide, or air containing sulfur. It is found in copper, copper-nickel, lead, and lead-zinc ores, among others. Silver was named after the Anglo-Saxon word "seolfor" or "siolfur," meaning 'silver'.

Arsenic

See more Arsenic products. Arsenic (atomic symbol: As, atomic number: 33) is a Block P, Group 15, Period 4 element with an atomic radius of 74.92160. Arsenic Bohr ModelThe number of electrons in each of arsenic's shells is 2, 8, 18, 5 and its electron configuration is [Ar] 3d10 4s2 4p3. The arsenic atom has a radius of 119 pm and a Van der Waals radius of 185 pm. Arsenic was discovered in the early Bronze Age, circa 2500 BC. It was first isolated by Albertus Magnus in 1250 AD. In its elemental form, arsenic is a metallic grey, brittle, crystalline, semimetallic solid. Elemental ArsenicArsenic is found in numerous minerals including arsenolite (As2O3), arsenopyrite (FeAsS), loellingite (FeAs2), orpiment (As2S3), and realgar (As4S4). Arsenic has numerous applications as a semiconductor and other electronic applications as indium arsenide, silicon arsenide and tin arsenide. Arsenic is finding increasing uses as a doping agent in solid-state devices such as transistors.